【題目】如圖,函數(shù)(k為常數(shù),k>0)的圖象與過(guò)原點(diǎn)的O的直線相交于A,B兩點(diǎn),點(diǎn)M是第一象限內(nèi)雙曲線上的動(dòng)點(diǎn)(點(diǎn)M在點(diǎn)A的左側(cè)),直線AM分別交x軸,y軸于C,D兩點(diǎn),連接BM分別交x軸,y軸于點(diǎn)E,F.現(xiàn)有以下四個(gè)結(jié)論:①△ODM與△OCA的面積相等;②若BM⊥AM于點(diǎn)M,則∠MBA=30°;③若M點(diǎn)的橫坐標(biāo)為1,△OAM為等邊三角形,則;④若,則MD=2MA.其中正確的結(jié)論的序號(hào)是_______.
【答案】①③④
【解析】
①設(shè)點(diǎn)A(m,),M(n,),構(gòu)建一次函數(shù)求出C,D坐標(biāo),利用三角形的面積公式計(jì)算即可判斷.
②△OMA不一定是等邊三角形,故結(jié)論不一定成立.
③設(shè)M(1,k),由△OAM為等邊三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根據(jù)OM=AM,構(gòu)建方程求出k即可判斷.
④如圖,作MK∥OD交OA于K.利用平行線分線段成比例定理解決問(wèn)題即可.
①設(shè)點(diǎn)A(m,),M(n,),
則直線AC的解析式為y=-x++,
∴C(m+n,0),D(0,),
∴,
∴△ODM與△OCA的面積相等,故①正確;
∵反比例函數(shù)與正比例函數(shù)關(guān)于原點(diǎn)對(duì)稱,
∴O是AB的中點(diǎn),
∵BM⊥AM,
∴OM=OA,
∴k=mn,
∴A(m,n),M(n,m),
∴,
∴AM不一定等于OM,
∴∠BAM不一定是60°,
∴∠MBA不一定是30°.故②錯(cuò)誤,
∵M點(diǎn)的橫坐標(biāo)為1,
∴可以假設(shè)M(1,k),
∵△OAM為等邊三角形,
∴OA=OM=AM,
1+k2=m2+,
∵m>0,k>0,
∴m=k,
∵OM=AM,
∴(1-m)2+(k)2=1+k2,
∴k2-4k+1=0,
∴k=2±,
∵m>1,
∴k=2+,故③正確,
如圖,作MK∥OD交OA于K.
∵OF∥MK,
,
∴,
∵OA=OB,
∴,
∴,
∵KM∥OD,
∴,
∴DM=2AM,故④正確.
故答案為①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一枚六個(gè)面編號(hào)分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲兩次,記第一次擲出的點(diǎn)數(shù)為,第二次擲出的點(diǎn)數(shù)為,則使關(guān)于的方程組 只有正數(shù)解的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七年級(jí)學(xué)生的體重情況,隨機(jī)抽取了七年級(jí)m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
組別 | 體重(千克) | 人數(shù) |
A | 37.5≤x<42.5 | 10 |
B | 42.5≤x<47.5 | n |
C | 47.5≤x<52.5 | 40 |
D | 52.5≤x<57.5 | 20 |
E | 57.5≤x<62.5 | 10 |
請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計(jì)圖中,C組所在扇形的圓心角的度數(shù)等于_______度;
(2)若把每組中各個(gè)體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?
(3)如果該校七年級(jí)有1000名學(xué)生,請(qǐng)估算七年級(jí)體重低于47.5千克的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,AE垂直于AB邊上的中線CD,交BC于點(diǎn)E.
(1)求證:
(2)若,求邊AC與BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC邊上一點(diǎn),且AD=BD,⊙O是△ACD的外接圓
(1)求證:直線AB是⊙O的切線;
(2)若AB=10,BC=16,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“六一”兒童節(jié)前夕,某部隊(duì)?wèi)?zhàn)士到福利院慰問(wèn)兒童.戰(zhàn)士們從營(yíng)地出發(fā),勻速步行前往文具店選購(gòu)禮物,停留一段時(shí)間后,繼續(xù)按原速步行到達(dá)福利院(營(yíng)地、文具店、福利院三地依次在同一直線上).到達(dá)后因接到緊急任務(wù),立即按原路勻速跑步返回營(yíng)地(贈(zèng)送禮物的時(shí)間忽略不計(jì)),下列圖象能大致反映戰(zhàn)
士們離營(yíng)地的距離與時(shí)間之間函數(shù)關(guān)系的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AP平分∠BAC,∠ADP和∠AEP互補(bǔ).
(1)作P到角兩邊AB,AC的垂線段PM,PN.
(2)求證:PD=PE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市在端午節(jié)期間開(kāi)展優(yōu)惠活動(dòng),凡購(gòu)物者可以通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤甲,指針指向A區(qū)域時(shí),所購(gòu)買物品享受9折優(yōu)惠、指針指向其它區(qū)域無(wú)優(yōu)惠;方式二:同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個(gè)轉(zhuǎn)盤的指針指向每個(gè)區(qū)域的字母相同,所購(gòu)買物品享受8折優(yōu)惠,其它情況無(wú)優(yōu)惠.在每個(gè)轉(zhuǎn)盤中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受9折優(yōu)惠的概率為 ;
(2)若顧客選擇方式二,請(qǐng)用樹(shù)狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).
(1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點(diǎn)D,當(dāng)S△CPD:S△BPD=1:2時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)G為x軸負(fù)半軸上的一點(diǎn),∠OGE=15°,連接PE,若∠PEG=2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);
(4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com