【題目】如圖1,有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.
(1)拼成的正方形的面積是 ,邊長是 .
(2)把10個小正方形組成的圖形紙(如圖2),剪開并拼成正方形.
①請在4×4方格圖內(nèi)畫出這個正方形.
②以小正方形的邊長為單位長度畫一條數(shù)軸,并在數(shù)軸上畫出表示-的點.
(3)這種研究和解決問題的方式,主要體現(xiàn)了 的數(shù)學(xué)思想方法.
A.?dāng)?shù)形結(jié)合 B.代入 C.換元 D.歸納
【答案】(1)5,;(2)①②作圖見解析;(3)A.
【解析】
(1)依據(jù)正方形的面積即可得到正方形的邊長;
(2)依據(jù)10個小正方形組成的圖形紙剪開并拼成正方形的邊長為,即可得到該正方形,并在數(shù)軸上畫出表示-的點.
(3)這種研究和解決問題的方式,主要體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法.
(1)拼成的正方形的面積是5,邊長是,
故答案為:5,;
(2)①10個小正方形組成的圖形紙剪開并拼成正方形的邊長為,如圖所示:
②表示-的點如圖所示:
(3)這種研究和解決問題的方式,主要體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想方法.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點P從點C開始沿射線CA方向以1cm/s的速度運動;同時,點Q也從點C開始沿射線CB方向以3cm/s的速度運動.
(1)幾秒后△PCQ的面積為3cm2?此時PQ的長是多少?(結(jié)果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°
(1)在BC上作出點D,使它到A,B兩點的距離相等(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法)
(2)若BD=6,求CD長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.
(1)求證:∠PBA=∠C;
(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小玲家在某24層樓的頂樓,對面新造了一幢28米高的圖書館,小玲在樓頂A處看圖書館樓頂B處和樓底C處的俯角分別是45°,60°.請問:
(1)兩樓的間距是多少米?(精確到1m)
(2)小玲家的這幢住宅樓的平均層高是多少米?(精確到0.1m)
(參考了數(shù)據(jù): ≈1.73,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟南某中學(xué)在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1=(x>0)的圖象上,頂點B在函數(shù)y2=(x>0)的圖象上,∠ABO=30°,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保證車輛行駛安全,現(xiàn)在公路旁設(shè)立一檢測點A觀測行駛的汽車是否超速.如圖,檢測點A到公路的距離是24米,在公路上取兩點B、C,使得∠ACB=30°,∠ABC=120°.
(1)求BC的長(結(jié)果保留根號);
(2)已知該路段限速為45千米/小時,若測得某汽車從B到C用時2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com