【題目】如圖,PAPB分別切圓OA、B兩點,C為劣弧AB上一點,∠APB=40°,則∠ACB= ).

A.70°B.80°C.110°D.140°

【答案】C

【解析】

如圖,連接AO,OBPA、PB分別切圓OA、B兩點,可以知道∠PAO=PBO=90°,由此可以求出∠AOB的度數(shù);設(shè)點E是優(yōu)弧AB上一點,由圓周角定理知,∠E=70°,由圓內(nèi)接四邊形的對角互補即可求出∠ACB的度數(shù).

如圖,連接AO,OB


PA、PB分別切圓OA、B兩點,
∴∠PAO=PBO=90°,
∴∠AOB=180°-APB=140°
設(shè)點E是優(yōu)弧AB上一點,
由圓周角定理知,∠E=70°,
由圓內(nèi)接四邊形的對角互補知,
ACB=180°-E=110°
故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.5米的正方形.點E、F分別在邊上,、和四邊形均由單一材料制成,制成和四邊形的三種材料的價格依次為每平方米30元、20元、10元.若將此種地磚按圖(2)所示的形式鋪設(shè),且中間的陰影部分組成正方形.設(shè)

1________,_________.(用含有x的代數(shù)式表示).

2)已知燒制該種地磚平均每塊需加工費0.35元,若要長大于0.1米,且每塊地磚的成本價為4元(成本價=材料費用+加工費用),則長應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=ABC,BEAC,垂足為點E,BDE是等邊三角形,若AD=4,則線段BE的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5m,EF=0.25m,目測點D到地面的距離DG=1.5m,到旗桿的水平距離DC=20m,則旗桿的高度為( )

A. mB. m

C.11.5mD.10m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是平行四邊形,OB=OC=2AB=.

(1)求點D的坐標,直線CD的函數(shù)表達式;

(2)已知點P是直線CD上一點,當點P滿足SPAO=SABO時,求點P的坐標;

(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F(不與A、B重合),使以A、 C F、M為頂點的四邊形為菱形?若存在,直接寫出F點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+ca0)的對稱軸為直線x=﹣1,與x軸的一個交點在(﹣3,0和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:2ab04acb20點(x1y1),(x2y2)在拋物線上若x1x2,則y1y2a+b+c0.正確結(jié)論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9)已知:ABCD的兩邊ABAD的長是關(guān)于x的方程的兩個實數(shù)根.

1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

2)若AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閨蜜裝在大學校園里盛行,閨蜜裝能很好的表達親如姐妹的友誼,也能成為校園一道靚麗的風景.某專賣店購進一批,兩款閨蜜裝,共花費了18400元,款比款多20套,其中每套款閨蜜裝進價200元,每套款閨蜜裝進價160.進行試銷售,供不應(yīng)求,很快銷售完畢,己知每套款閨蜜裝售價為240.

1)求購進兩款閨蜜裝各多少套?

2)國慶將至,專賣店又購進第二批,兩款閨蜜裝并進行促銷活動,在促銷期間,每套款閨蜜裝在進價的基礎(chǔ)上提高銷售,每套款閨蜜裝在第一批售價的基礎(chǔ)上降低銷售,結(jié)果在促銷售活動中,款閨蜜裝的銷量比第一批款銷售量降低了,款閨蜜裝的銷售量比第一批款銷售量上升了,結(jié)果本次促銷活動共獲利5200元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(定義)從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,△ABC中,∠A40°,∠B60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;

2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠Ax°,∠By°,則yx之間的關(guān)系式為_____________________________;

3)如圖2,△ABC中,AC2,BC,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.

查看答案和解析>>

同步練習冊答案