分析 根據(jù)題意畫出圖形,分兩種情況:①當(dāng)P在BC上時(shí);②當(dāng)P在CD上時(shí),P為CD的中點(diǎn);由矩形的性質(zhì)和勾股定理以及相似三角形的性質(zhì)即可得出結(jié)果.
解答 解:分兩種情況:
①當(dāng)P在BC上時(shí),如圖1所示
∵四邊形ABCD是矩形,
∴∠ABP=90°,AD=BC=4,AD∥BC,CD=AB=2,
∴△ADE∽△PBE,
∴$\frac{AE}{PE}$=$\frac{AD}{PB}$,
∵△ABP是等腰三角形,
∴PB=AB=2,
∴$\frac{AE}{PE}$=2,
∴$\frac{AE}{AP}$=$\frac{2}{3}$,
由勾股定理得:AP=$\sqrt{A{B}^{2}+P{B}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
∴AE=$\frac{4}{3}$$\sqrt{2}$;
②當(dāng)P在CD上時(shí),P為CD的中點(diǎn),如圖2所示:
則PD=$\frac{1}{2}$CD=1,
∴AP=$\sqrt{{4}^{2}+{1}^{2}}$=$\sqrt{17}$,
∵AB∥CD,
∴△ABE∽△DPE,
∴$\frac{AE}{PE}=\frac{AB}{PD}$=2,
∴AE=2PE,
∴AE=$\frac{2}{3}$AP=$\frac{2\sqrt{17}}{3}$;
綜上所述,AE的長(zhǎng)為$\frac{4}{3}$$\sqrt{2}$或$\frac{2\sqrt{17}}{3}$.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、比例的性質(zhì);熟練掌握矩形的性質(zhì),證明三角形相似得出比例式是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2015 | B. | -2015 | C. | 2016 | D. | -2016 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com