【題目】在平面直角坐標系中,□ OABC的邊OC落在x軸的正半軸上,點C(4,0),B(6,2),直線y=2x+1以每秒2個單位的速度向下平移,經(jīng)過________秒該直線可將□OABC的面積平分.
【答案】3
【解析】
首先連接AC、BO,交于點D,當y=2x+1經(jīng)過D點時,該直線可將□OABC的面積平分,然后計算出過D且平行直線y=2x+1的直線解析式,從而可得直線y=2x+1要向下平移6個單位,進而可得答案.
連接AC、BO,交于點D,當y=2x+1經(jīng)過D點時,該直線可將□OABC的面積平分;
∵四邊形AOCB是平行四邊形,
∴BD=OD,
∵B(6,2),點C(4,0),
∴D(3,1),
設DE的解析式為y=kx+b,
∵平行于y=2x+1,
∴k=2,
∵過D(3,1),
∴DE的解析式為y=2x5,
∴直線y=2x+1要向下平移6個單位,
∴時間為3秒,
故答案為:3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,MN表示某引水工程的一段設計路線,從點M到點N的走向為北偏西30°,在點M的北偏西60°方向上有一點A,以點A為圓心,以500米為半徑的圓形區(qū)域為居民區(qū),取MN上另一點B,測得BA的方向為北偏西75°.已知MB=400米,若不改變方向,則輸水路線是否會穿過居民區(qū)?請通過計算說明理由.(參考數(shù)據(jù): ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“龜兔賽跑”的故事同學們都非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時路程與時間的關系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中 的路程與時間的關系,線段OD表示賽跑過程中 的路程與時間的關系.賽跑的全程是 米.
(2)兔子在起初每分鐘跑 米,烏龜每分鐘爬 米.
(3)烏龜用了 分鐘追上了正在睡覺的兔子.
(4)兔子醒來,以48千米/時的速度跑向終點,結果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點E,AD⊥BC于點D,∠BAD=45°,AD與BE交于點F,連接CF.
(1)求證:BF=2AE;
(2)若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE⊥AB.
(1)若∠BOC=4∠AOC,求∠BOD的度數(shù);
(2)若∠1=∠2,問OF⊥CD嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點P表示廣場上的一盞照明燈.
(1)請你在圖中畫出小敏在照明燈P照射下的影子(用線段表示);
(2)若小麗到燈柱MO的距離為4.5米,照明燈P到燈柱的距離為1.5米,小麗目測照明燈P的仰角為55°,她的目高QB為1.6米,試求照明燈P到地面的距離(結果精確到0.1米).
(參考數(shù)據(jù):tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線的對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達式;
(2)點P是線段BD上一點,當PE=PC時,求點P的坐標;
(3)在(2)的條件下,過點P作PF⊥x軸于點F,G為拋物線上一動點,M為x軸上一動點,N為直線PF上一動點,當以F、M、G為頂點的四邊形是正方形時,請求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).
(1)請畫出將△ABC向下平移5個單位后得到的△A1B1C1;
(2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2,并直接寫出點A旋轉到點A2所經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com