【題目】如圖,在ABCD中,∠BAD、∠ADC的平分線AE、DF分別交BC于點(diǎn)E、F,AE與DF相交于點(diǎn)G.
(1)求證:∠AGD=90°.
(2) 求證:BF=CE.
【答案】(1)見詳解;(2)見詳解
【解析】
(1)由平行四邊形的性質(zhì)和角平分線的定義即可得出結(jié)論;
(2)根據(jù)平行四邊形的性質(zhì)和平行線的性質(zhì)推出∠ADF=∠CFD,結(jié)合∠ADF=∠CDF求出CD=CF,同理可得AB=BE,即可證明BF=CE.
解:(1)∵四邊形ABCCD是平行四邊形,
∴∠BAD+∠ADC=180°,
∵AE、DF分別是∠BAD、∠ADC的平分線,
∴∠DAG=∠BAD,∠ADG=∠ADC,
∴∠DAG+∠ADG=×(∠BAD+∠ADC)=×180°=90°,
∴∠AGD=90°;
(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠ADF=∠CFD,
∵∠ADF=∠CDF,
∴∠CDF=∠CFD,
∴CD=CF
同理可得AB=BE,
∵AB=CD,
∴CF=BE,
∵BE=BF+EF,CF=CE+EF
∴BF=CE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價(jià)格購進(jìn)800件T恤,第一個月以單價(jià)80元銷售,售出了200件;第二個月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購進(jìn)的價(jià)格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價(jià)為40元,設(shè)第二個月單價(jià)降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價(jià)應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級二班名同學(xué)在“愛心捐款”活動中,捐款情況統(tǒng)計(jì)如表,
捐款金額(元) | |||||
捐款人數(shù)(人) |
表中________;
二班同學(xué)捐款數(shù)組成的數(shù)據(jù)中,中位數(shù)是________、眾數(shù)是________;
九年級二班名同學(xué)平均捐款多少元?
根據(jù)樣本數(shù)據(jù),估計(jì)該校九年級名學(xué)生在本次活動中捐款多于元的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有【 】個.
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·湖州)如圖,已知拋物線經(jīng)過點(diǎn)(0,-3),請你確定一個
b的值,使該拋物線與x軸的一個交點(diǎn)在(1,0)和(3,0)之間。你確定的b的值是 ▲ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對稱軸為直線x=﹣1,給出四個結(jié)論: ①c>0; ②4a-2b+c>0. ③2a-b=0;④若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2; 其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1) (2)2x2+3x—1=0(用配方法解)
(3) (4)(x+1)(x+8)=-2
(5) (6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥NN于點(diǎn)M,BN⊥MN于N.
(1)求證:△AMC≌△CNB;
(2)求證:MN=AM+BN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一學(xué)校為了解九年級學(xué)生某次體育測試成績,現(xiàn)對這次體育測試成績進(jìn)行隨機(jī)抽樣調(diào)查,結(jié)果統(tǒng)計(jì)如下,其中扇形統(tǒng)計(jì)圖中C等級所在扇形的圓心角為36°.
被抽取的體育測試成績頻數(shù)分布表
等級 | 成績(分) | 頻數(shù)(人數(shù)) |
A | 36<x≤40 | 19 |
B | 32<x≤36 | b |
C | 28<x≤32 | 5 |
D | 24<x≤28 | 4 |
E | 20<x≤24 | 2 |
合計(jì) | a |
請你根據(jù)以上圖表提供的信息,解答下列問題:
(1)a= ,b= ;
(2)A等級的頻率是 ;
(3)在扇形統(tǒng)計(jì)圖中,B等級所對應(yīng)的圓心角是 度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com