【題目】如圖,在以點(diǎn)O為圓心的半圓中,AB為直徑,且AB=4,將該半圓折疊,使點(diǎn)A和點(diǎn)B落在點(diǎn)O處,折痕分別為EC和FD,則圖中陰影部分面積為( 。
A. B. C. D.
【答案】D
【解析】
根據(jù)題意求得AC=OC=OD=DB=1,CD=2,EC=,進(jìn)一步求出△EOF是等邊三角形,然后根據(jù)S陰=S長(zhǎng)方形CDFE-(S半圓-S長(zhǎng)方形CDFE)+2(S扇形OEF-S△EOF)即可求得.
∵AB是直徑,且AB=4,
∴OA=OE=2,
∵使點(diǎn)A和點(diǎn)B落在點(diǎn)O處,折痕分別為EC和FD,
∴AC=OC=OD=DB=1,
∴CD=2,EC=,
∴△EOF是等邊三角形,
∴∠EOF=60°,
S半圓=,S長(zhǎng)方形CDFE=
∴S陰=S長(zhǎng)方形CDFE-(S半圓-S長(zhǎng)方形CDFE)+2(S扇形OEF-S△EOF)=-=
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的的直徑,弦CD與AB相交,∠BCD=25°。
(1)如圖1,求∠ABD的大;
(2)如圖2,過(guò)點(diǎn)D作O的切線,與AB的延長(zhǎng)線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為,與y軸負(fù)半軸交于點(diǎn)C.
若是等腰直角三角形,求a的值.
探究:是否存在a,使得是等腰三角形?若存在,求出符合條件的a的值;不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB于點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:△PCF是等腰三角形;
(3)若AF=6,EF=2,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在我國(guó)釣魚島附近海域有兩艘自西向東航行的海監(jiān)船A、B,B船在A船的正東方向,且兩船保持10海里的距離,某一時(shí)刻兩海監(jiān)船同時(shí)測(cè)得在A的東北方向,B的北偏東15°方向有一不明國(guó)籍的漁船C,求此時(shí)漁船C與海監(jiān)船B的距離是多少.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象與反比例函數(shù)y=﹣8x-1的函數(shù)交于A(﹣2,b),B兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線AB向下平移m(m>0)個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,),試用含a的式子表示四邊形ABPO的面積,并求出當(dāng)△ABP的面積與△ABC的面積相等時(shí)a的值;
(3)在x軸上,存在這樣的點(diǎn)M,使△MAB為等腰三角形.請(qǐng)直接寫出所有符合要求的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2k+2=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求實(shí)數(shù)k的取值范圍;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2.是否存在這樣的實(shí)數(shù)k,使得|x1|﹣|x2|=?若存在,求出這樣的k值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四邊形被一條對(duì)角線分割成兩個(gè)三角形,如果分割所得的兩個(gè)三角形相似,我們就把這條對(duì)角線稱為相似對(duì)角線.
(1)如圖,正方形的邊長(zhǎng)為4,為的中點(diǎn),點(diǎn),分別在邊和上,且,線段與交于點(diǎn),求證:為四邊形的相似對(duì)角線;
(2)在四邊形中,是四邊形的相似對(duì)角線,,,,求的長(zhǎng);
(3)如圖,已知四邊形是圓的內(nèi)接四邊形,,,,點(diǎn)是的中點(diǎn),點(diǎn)是射線上的動(dòng)點(diǎn),若是四邊形的相似對(duì)角線,請(qǐng)直接寫出線段的長(zhǎng)度(寫出3個(gè)即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com