【題目】一個四邊形被一條對角線分割成兩個三角形,如果分割所得的兩個三角形相似,我們就把這條對角線稱為相似對角線.

1)如圖,正方形的邊長為4,的中點,點,分別在邊上,且,線段交于點,求證:為四邊形的相似對角線;

2)在四邊形中,是四邊形的相似對角線,,,,求的長;

3)如圖,已知四邊形是圓的內接四邊形,,,點的中點,點是射線上的動點,若是四邊形的相似對角線,請直接寫出線段的長度(寫出3個即可).

【答案】1)詳見解析;(23;(3)詳見解析.

【解析】

1)只要證明EAF∽△FEG即可解決問題;
2)如圖3中,作DEBABA的延長線于E.設AE=a.在RtBDE中,利用勾股定理構建方程求出a,分兩種情形構建方程求解即可;
3)①當AFE∽△EFC時,連接BCAC,BD.②當AFE∽△FEC時,作CHADAD的延長線于H,作OMADM,連接OA.③當AFE∽△CEF時,分別求解即可,注意答案不唯一.

解:(1)如圖1,∵正方形,,中點

,∵,∴

,

,∴四邊形為平行四邊形

,∴,

為四邊形的相似對角線.

2)如圖2,過點,垂足為,設

,∴,∴

,

(負根已經舍棄),

分為兩種情況:

①如圖3,當時,

,∴

②如圖4,當時,

,∴

綜上,3

3)①如圖5,∵∠FEC=A=90°,∠BEF=BEC+FEC=A+AEF,

,,∴,∴

一線三等角.

②如圖,當AFE∽△FEC時,作CHADAD的延長線于H,作OMADM,連接OA

∵△AFE∽△FEC
∴∠AFE=FEC,
ADEC
∴∠CEB=DAB=90°,
∵∠OMA=AHC=90°,
∴四邊形AEOM,四邊形AECH都是矩形,
OMAD,
AM=MD=3
AM=OE=3,
OEAB
AE=EB=4,
OA==5,
CE=AH=8,設AF=x,則FH=8-x,CH=AE=4,
AEF∽△HFC,可得= ,
,
解得x=4,
經檢驗x=4是分式方程的解,
AF=4

③如圖當AFE∽△CEF時易證四邊形AECF是矩形,AF=EC=8

綜上所述,滿足條件的AF的長為48.(答案不唯一)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以點O為圓心的半圓中,AB為直徑,且AB=4,將該半圓折疊,使點A和點B落在點O處,折痕分別為ECFD,則圖中陰影部分面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC的中點為O,過點O,交BC邊于點E,交AD邊于點F,分別連接AE、CF

1)求證:四邊形AECF是菱形;

2)若,,請直接寫出EF的長為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線:y=﹣xx2)(0≤x≤2)記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°C2,交x軸于點A2;將C2繞點A2旋轉180°C3,交x軸于點A3…如此進行下去,則C2019的頂點坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線Ly=﹣x2+bx+c經過坐標原點,與它的對稱軸直線x2交于A點.

1)直接寫出拋物線的解析式;

2)⊙Ax軸相切,交y軸于BC點,交拋物線L的對稱軸于D點,恒過定點的直線ykx2k+8k0)與拋物線L交于M、N點,AMN的面積等于2,試求:

①弧BC的長;

k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小儒在學習了定理直角三角形斜邊上的中線等于斜邊的一半之后做了如下思考:

1)他認為該定理有逆定理,即如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形應該成立,你能幫小儒證明一下嗎?如圖①,在ABC中,ADBC邊上的中線,若ADBDCD,求證:∠BAC90°

2)接下來,小儒又遇到一個問題:如圖②,已知矩形ABCD,如果在矩形外存在一點E,使得AECE,求證:BEDE,請你作出證明,可以直接用到第(1)問的結論.

3)在第(2)問的條件下,如果AED恰好是等邊三角形,直接用等式表示出此時矩形的兩條鄰邊ABBC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.

(1)寫出mn之間的關系式;

(2)當⊙P與兩坐標軸都相切時,求出⊙P的半徑;

(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yax+ba≠0)的圖象與反比例函數(shù)yk≠0)的圖象相交于A、B兩點且點A的坐標為(3,1),點B的坐標(﹣1,n).

1)分別求兩個函數(shù)的解析式;

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行手工制作比賽,賽后整理參賽同學的成績,并制作成圖表如下:

分數(shù)段

頻數(shù)

頻率

60≤x70

30

0.15

70≤x80

m

0.45

80≤x90

60

n

90≤x100

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

1)表中mn所表示的數(shù)分別為:m______,n______,

2)請在圖中,補全頻數(shù)分布直方圖;

3)比賽成績的中位數(shù)落在哪個分數(shù)段?

4)如果比賽成績80分以上(含80分)可以獲得獎勵,那么獲獎率是多少?

查看答案和解析>>

同步練習冊答案