【題目】如圖,已知∠ABM=37°,AB=20,C是射線BM上一點(diǎn).
(1)求點(diǎn)A到BM的距離;
(2)在下列條件中,可以唯一確定BC長(zhǎng)的是;(填寫所有符合條件的序號(hào))
①AC=13;②tan∠ACB= ;③連接AC,△ABC的面積為126.
(3)在(2)的答案中,選擇一個(gè)作為條件,畫出草圖,求BC.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
【答案】
(1)
解:作AD⊥BC于D,則∠ADB=90°.
在Rt△ABD中,∵∠ADB=90°,
∴AD=ABsinB=12
(2)②③
(3)
解:方案一:選②,
由(1)得,AD=12,BD=ABcosB=16,
在Rt△ACD中,∵∠ADC=90°,
∴CD= =5,
∴BC=BD+CD=21.
方案二:選③,
作CE⊥AB于E,則∠BEC=90°,
由S△ABC= ABCE得CE=12.6,
在Rt△BEC中,
∵∠BEC=90°,
∴BC= =21
【解析】解: (2)①以點(diǎn)A為圓心、13為半徑畫圓,與BM有兩個(gè)交點(diǎn),不唯一;
②由tan∠ACB= 知∠ACB的大小確定,在△ABC中,∠ACB、∠B及AB確定,此時(shí)的三角形唯一;
③AB的長(zhǎng)度和三角形的面積均確定,則點(diǎn)C到AC的距離即可確定,則BM上的點(diǎn)C是唯一的;
所以答案是:②③;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識(shí),掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=7,將矩形ABCD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到矩形A′B′CD′,點(diǎn)E、F分別是BD、B′D′的中點(diǎn),則EF的長(zhǎng)度為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員選拔一人參加運(yùn)動(dòng)會(huì),對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán))
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)由表格中的數(shù)據(jù),計(jì)算出甲的平均成績(jī)是 環(huán),乙的成績(jī)是 環(huán).
(2)結(jié)合平均水平與發(fā)揮穩(wěn)定性你認(rèn)為推薦誰(shuí)參加比賽更適合,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點(diǎn)M,CF與AD交于點(diǎn)N.
(1)求證:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF滿足何種關(guān)系時(shí),四邊形AMCN是菱形,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)比較大小;
①|(zhì)﹣2|+|3| |﹣2+3|;
②|4|+|3| |4+3|;
③|﹣|+|﹣| |﹣+(﹣)|;
④|﹣5|+|0| |﹣5+0|.
(2)通過(1)中的大小比較,猜想并歸納出|a|+|b|與|a+b|的大小關(guān)系,并說明a,b滿足什么關(guān)系時(shí),|a|+|b|=|a+b|成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長(zhǎng)為 a的正方形ABCD和邊長(zhǎng)為 b的正方形BEFG排放在一起,O1和O2分別是這兩個(gè)正方形的中心,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的情景對(duì)話,然后解答問題:
老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小明:那直角三角形是否存在奇異三角形呢?
小紅:等邊三角形一定是奇異三角形.
(1)根據(jù)“奇異三角形”的定義,小紅得出命題:“等邊三角形一定是奇異三角形”,則小紅提出的命題是 .(填“真命題”或“假命題”)
(2)若是奇異三角形,其中兩邊的長(zhǎng)分別為、,則第三邊的長(zhǎng)為 .
(3)如圖,中,,以為斜邊作等腰直角三角形,點(diǎn)是上方的一點(diǎn),且滿足.求證:是奇異三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com