【題目】已知MNEFBC,點(diǎn)AD為直線MN上的兩動(dòng)點(diǎn),ADa,BCbAEEDmn;

(1)當(dāng)點(diǎn)A、D重合,即a=0時(shí)(如圖1),試求EF.(用含m,nb的代數(shù)式表示)

(2)請(qǐng)直接應(yīng)用(1)的結(jié)論解決下面問(wèn)題:當(dāng)A、D不重合,即a≠0,

如圖2這種情況時(shí),試求EF.(用含a,b,m,n的代數(shù)式表示)

  1

   2

   3

如圖3這種情況時(shí),試猜想EFab之間有何種數(shù)量關(guān)系?并證明你的猜想.

【答案】(1)EF;(2)①EF;②猜想:EF,證明詳見(jiàn)解析.

【解析】

(1)EFBC,即可證得△AEF∽△ABC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可證得,根據(jù)比例變形,即可求得EF的值;
(2)①連接BD,EF交于點(diǎn)H,(1), HF,EH,又由EFEHHF,即可求得EF的值;
連接DE,并延長(zhǎng)DEBCG,根據(jù)平行線分線段成比例定理,即可求得BG的長(zhǎng),又由EFGCBCBG,即可求得EF的值.

解 (1)EFBC,

∴△AEF∽△ABC

,

,

BCb

,

EF;

(2)如圖2,連接BD,與EF交于點(diǎn)H,

(1)知,HF,EH

EFEHHF,

EF;

②猜想:EF,

證明:連接DE,并延長(zhǎng)DEBCG

由已知,得BG,

EF,

GCBCBG

EF(BCBG)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)ykxy=-在同一坐標(biāo)系內(nèi)的大致圖象是(  )

(1)    (2)

(3)    (4)

A. (1)(2)

B. (1)(3)

C. (2)(3)

D. (2)(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)你去看電影的時(shí)候,你想坐得離屏幕近一些,可是又不想為了看屏幕邊緣的鏡頭不停地轉(zhuǎn)動(dòng)眼睛.如圖所示,點(diǎn)A、B分別為屏幕邊緣兩點(diǎn),若你在P點(diǎn),則視角為APB.如果你覺(jué)得電影院內(nèi)P點(diǎn)是觀看的最佳位置,可是已經(jīng)有人坐在那了,那么你會(huì)找到一個(gè)位置Q,使得在Q、P兩點(diǎn)有相同的視角嗎?請(qǐng)?jiān)趫D中畫(huà)出來(lái)(保留畫(huà)圖痕跡,不寫(xiě)畫(huà)法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)為,經(jīng)過(guò)原點(diǎn)且與軸另一交點(diǎn)為

求點(diǎn)的坐標(biāo);

為等腰直角三角形,求拋物線的解析式;

現(xiàn)將拋物線繞著點(diǎn)旋轉(zhuǎn)后得到拋物線,若拋物線的頂點(diǎn)為,當(dāng),且頂點(diǎn)在拋物線上時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)yx+2的圖象與函數(shù)yk≠0)的圖象交于AB兩點(diǎn),連接BO并延長(zhǎng)交函數(shù)yk≠0)的圖象于點(diǎn)C,連接AC,若ABC的面積為8.則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OAB的頂點(diǎn)坐標(biāo)分別為O0,0)、A3,2)、B2,0),將這三個(gè)頂點(diǎn)的坐標(biāo)同時(shí)擴(kuò)大到原來(lái)的2倍,得到對(duì)應(yīng)點(diǎn)DE、F

(1)在圖中畫(huà)出△DEF

(2)點(diǎn)E是否在直線OA上?為什么?

(3)OAB與△DEF______位似圖形(填“是”或“不是”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:已知∠ABC=120°,作等邊△ACD,將△ACD旋轉(zhuǎn)60°,得到△CDEAB=3,BC=2,求BD和∠ABD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于O,B=60°,CD是O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.

(1)求證:PA是O的切線;

(2)若AB=4+,BC=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利客來(lái)超市新進(jìn)一批工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.

(1)求出每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)為4000元?

(3)如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷(xiāo)售量)

查看答案和解析>>

同步練習(xí)冊(cè)答案