分析 (1)(2)兩個(gè)問(wèn)題,要根據(jù)題意,畫出圖象,可以解決.
(3)當(dāng)反射光線平行X軸時(shí),反射光線與坐標(biāo)軸沒(méi)有交點(diǎn),只要求出這樣的反射點(diǎn),就可以解決這個(gè)問(wèn)題了.
解答 解:(1)答案如圖:
(2)①由題意:∠1=∠2,∠APB=90°,
∴∠1=45°,
∴反射光與切線的夾角為45°.
②由題意:這些反射點(diǎn)組成的多邊形是正十二邊形,
∴入射光線與反射光線夾角為150°,
∴∠AOP1=30°,∵OP1=1,
∴P1(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).
(3)如圖:當(dāng)反射光PA∥X軸時(shí),反射光線與坐標(biāo)軸沒(méi)有交點(diǎn).
作PD⊥OC,PN⊥OM垂足分別為M,N,設(shè)PD=m.
∵∠GPO=∠HPA,∠GPC=∠HPC=90°,
∴∠OPC=∠APC=∠PCO,∴OP=OC,
在RT△PON中,∵ON=PD=m,PN2=1-(2-m)2,
∴PO2=m2+1-(2-m)2,
∵PD∥OM,∵$\frac{PD}{OM}=\frac{CP}{CM}$,∴CP=$\frac{m}{2-m}$,
CD2=($\frac{m}{2-m}$)2-m2,
∴OC=PN+CD,
OC2=($\sqrt{1-(2-m)^{2}}$+$\sqrt{(\frac{m}{2-m})^{2}-{m}^{2}}$)2,
由:PO2=OC2得到:($\frac{m}{2-m}$)2-m2=($\sqrt{1-(2-m)^{2}}$+$\sqrt{(\frac{m}{2-m})^{2}-{m}^{2}}$)2,
∴m1=2-$\frac{\sqrt{2}}{2}$,(m2=2+$\frac{\sqrt{2}}{2}$,m3=4,不合題意舍棄),
∴根據(jù)左右對(duì)稱性得到:滿足條件的反射點(diǎn)P的縱坐標(biāo):1$≤m<2-\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 這是個(gè)幾何,代數(shù)綜合題.考查的知識(shí)點(diǎn)比較多,用到數(shù)形結(jié)合的思想,要求作圖能力強(qiáng),學(xué)會(huì)用方程的思想去思考.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 開(kāi)口向下 | B. | 對(duì)稱軸是x=-2 | C. | 頂點(diǎn)坐標(biāo)是(-2,2) | D. | 與x軸無(wú)交點(diǎn) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com