【題目】在平面直角坐標系xOy中,拋物線y軸于點A,交直線x=6于點B.

1填空:拋物線的對稱軸為x=_________,點B的縱坐標為__________(用含a的代數(shù)式表示);

2若直線ABx軸正方向所夾的角為45°時,拋物線在x軸上方,求的值;

3記拋物線在AB之間的部分為圖像G(包含A、B兩點),若對于圖像G上任意一點,總有≤3,求a的取值范圍.

【答案】 (1); ;(2)a=;(3)aa<0.

【解析】(1). ;; (2) ; (3) a<0.

試題分析:1根據拋物線的對稱軸為直線,代入數(shù)據即可得出結論;x=6代入直線即可求出點B的縱坐標;

(2)根據直線ABx軸正方向所夾的角為45°列方程-30a2+36a+3=6+3求出a的值;

(3)分a>0a<0兩種情況考慮,依照題意畫出函數(shù)圖象,利用數(shù)形結合即可得出a的取值范圍.

解:(1)①對稱軸為:

②把x=6代入直線得,

y=36a-30a2+3.

∴點B的縱坐標為-30a2+36a+3.

(2)x=0, =3,

∴A(0,3).

∵直線ABx軸正方向所夾的角為45°,

-30a2+36a+3=6+3,

解之得

,a2=1(舍去).

a的值是 .

3)當a0時,如圖1

A0,3),

要使0≤xp≤6時,始終滿足yp≤3,只需使拋物線y=ax2-5a2x+3的對稱軸與直線x=3重合或在直線x=3的右側.

,

.

a0時,如圖2,

0≤xp≤6中,yp≤3恒成立.

綜上所述,a的取值范圍為a<0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】國慶期間,某電影院裝修后重新開業(yè),試營業(yè)期間統(tǒng)計發(fā)現(xiàn),影院每天售出的電影票張數(shù)y(張)與電影票售價(元/張)之間滿足一次函數(shù)關系: , 是整數(shù),影院每天運營成本為1600元,設影院每天的利潤為w(元)(利潤=票房收入運營成本).

1)試求w之間的函數(shù)關系式;

2)影院將電影票售價定為多少時,每天獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形紙片沿著AE折疊后,點D恰好與BC邊上的點F重合,已知AB6cm,BC10cm,則EC的長度為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示, 的角平分線,以點為圓心, 為半徑作圓交的延長線于點,交于點,交于點,且

)求證: ;

)求證:點的中點;

)如果,求半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從我市至棗莊正在修筑的高速公路經過某村,需把本村部分農戶搬遷至一個規(guī)劃區(qū)域建房.若這批搬遷農戶建房每戶占地,則規(guī)劃區(qū)域內綠地面積占規(guī)劃區(qū)域總面積的;政府又鼓勵本村不需要搬遷的農戶到規(guī)劃區(qū)域建房,這樣又有戶農戶加入建房,若仍以每戶占地計算,則這時綠地面積只占規(guī)劃區(qū)域總面積的.問:

1)(列方程組解應用題)最初必須搬遷建房的農戶有多少,政府的規(guī)劃區(qū)域總面積是多少平方米?

2)若要求綠地面積不得少于規(guī)劃區(qū)域總面積的,為了符合要求,需要退出部分農戶,至少需要退出幾戶農戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,BC=12,E為邊AC的中點,

(1)如圖1,過點EEH⊥BC,垂足為點H,求線段CH的長;

(2)作線段BE的垂直平分線分別交邊BCBE、AB于點D、O、F.

①如圖2,當∠BAC=90°時,求BD的長;

②如圖3,設tan∠ACB=x,BD=y,求yx之間的函數(shù)表達式和tan∠ACB的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)如圖,已知點B、EC、F在同一直線上,AB=DE,∠A=∠D,AC∥DF

求證:(1△ABC≌△DEF; (2BE=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a0)中的x與y的部分對應值如表:下列結論:①ac<0;②當x1時,y的值隨x的增大而減小;3是方程ax2+(b﹣1)x+c=0的一個根;當﹣1<x<3時,ax2+(b﹣1)x+x>0.其中正確的序號為_____

x

﹣1

0

1

3

y

﹣1

3

5

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AEAB,AFAC,AE=AB,AF=AC.求證:(1)EC=BF;(2)ECBF.

查看答案和解析>>

同步練習冊答案