【題目】因快手及抖音等新媒體的傳播,衢州水亭門已成為最著名的旅游景點之一,2019年“十一”黃金周期間,接待游客已達萬人次.衢州美食無數(shù),一家特色小面店希望在長假期間獲得較好的收益,經(jīng)測算知,該小面的成本價為每碗元,借鑒以往經(jīng)驗:若每碗小面賣元,平均每天能夠銷售碗,若降價銷售,每降低元,則平均每天能夠多銷售碗.為了維護城市形象,規(guī)定每碗小面的售價不得超過元,則當每碗小面的售價定為多少元時,店家才能實現(xiàn)每天盈利元?

【答案】當每碗小面的售價定為元時,店家才能實現(xiàn)每天盈利元.

【解析】

可設(shè)每碗售價定為元時,店家才能實現(xiàn)每天利潤6300元,根據(jù)利潤的等量關(guān)系列出方程求解即可.

設(shè)當每碗小面的售價定為元時,店家才能實現(xiàn)每天盈利元,

依題意有

解得

規(guī)定每碗小面的售價不得超過元,

答:當每碗小面的售價定為元時,店家才能實現(xiàn)每天盈利元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).
(1)將△ABC繞點B順時針旋轉(zhuǎn)90°得到△A′BC′,請畫出△A′BC′.
(2)求BA邊旋轉(zhuǎn)到BA′位置時所掃過圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】被歷代數(shù)學(xué)家尊為“算經(jīng)之首”的《九章算術(shù)》是中國古代算法的扛鼎之作.《九章算術(shù)》中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕.一雀一燕交而處,衡適平.并燕、雀重一斤.問燕、雀一枚各重幾何?”

譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤.問雀、燕毎只各重多少斤?”

設(shè)每只雀重x斤,每只燕重y斤,可列方程組為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,CDAD,垂足為點D,下列說法錯誤的是( )

A.A與點B的距離是線段AB的長B.A到直線CD的距離是線段AD的長

C.線段CDABCAB上的高D.線段ACBCDBD上的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩名工人參加操作技能培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次測試成績中隨機抽取次,數(shù)據(jù)如下(單位:分).

1)請你計算這兩組數(shù)據(jù)的平均數(shù)、中位數(shù).

2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計學(xué)的角度考慮,你認為選派哪名工人參加合適?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,DM,EN分別垂直平分AB和AC,交BC于點D,E,若∠DAE=50°°,則∠BAC=________,若△ADE的周長為19cm,則BC=_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.

(1)如果AC=6cm,BC=8cm,試求△ACD的周長;

(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);

(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);

(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達);

(4)運用你所得到的公式,計算下列各題:

①(2m+n-p)(2m-n+p);②10.3×9.7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A1,0)、點By軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,且點C的坐標為(a,b),且a3

1)直接寫出點C的坐標   ;

2)直接寫出點E的坐標   ;

3)點PCE上一動點,設(shè)∠CBPx°,∠PADy°,∠BPAz°,確定x,y,z之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案