【題目】如圖,在平面直角坐標系中有一邊長為1的正方形OABC,邊OAOC分別在x軸,y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OB1為邊作第三個正方形OB1B2C2,照此規(guī)律作下去,則點B2019的坐標為______

【答案】(0,﹣21010)

【解析】

首先求出B1、B2、B3、B4、B5B6、B7B8、B9的坐標,找出這些坐標的之間的規(guī)律,然后根據(jù)規(guī)律計算出點B2019的坐標.

解:∵正方形OABC邊長為1

OB,

∵正方形OBB1C1是正方形OABC的對角線OB為邊,

OB12,

B1點坐標為(20),

同理可知OB22B2點坐標為(2,﹣2),

同理可知OB34B3點坐標為(0,﹣4)

B4點坐標為(4,﹣4),B5點坐標為(8,0),

B6(8,8)B7(0,16)

B8(16,16),B9(32,0),

由規(guī)律可以發(fā)現(xiàn),每經(jīng)過8次作圖后,點的坐標符號與第一次坐標符號相同,每次正方形的邊長變?yōu)樵瓉淼?/span>倍,

2019÷8252…3,

B2019的橫坐標,與點B3的相同為0,橫縱坐標都是負值,

B2013的坐標為(0,﹣21010)

故答案為:(0,﹣21010)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某文具商店銷售功能相同的A、B兩種品牌的計算器,購買2A品牌和3B品牌的計算器共需156;購買3A品牌和1B品牌的計算器共需122

(1)求這兩種品牌計算器的單價;

(2)學校開學前夕,該商店對這兩種計算器開展了促銷活動具體辦法如下A品牌計算器按原價的八折銷售,B品牌計算器超出5個的部分按原價的七折銷售,設購買xA品牌的計算器需要y1,購買xx>5)個B品牌的計算器需要y2分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;

(3)當需要購買50個計算器時,買哪種品牌的計算器更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在x軸的正半軸上依次截取OA1A1A2A2A3A3A4A4A5,過點A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數(shù)yx≠0)的圖象相交于點P1P2、P3、P4P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4A4P5A5,并設其面積分別為S1S2、S3、S4、S5,則S10_____.(n≥1的整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一條拋物線yax2bxca≠0)與x軸有兩個交點,那么以拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”,[a,b,c]稱為“拋物線系數(shù)”.

(1)任意拋物線都有“拋物線三角形”是______(填“真”或“假”)命題;

(2)若一條拋物線系數(shù)為[1,0-2],則其“拋物線三角形”的面積為________;

(3)若一條拋物線系數(shù)為[-1,2b,0],其“拋物線三角形”是個直角三角形,求該拋物線的解析式;

(4)在(3)的前提下,該拋物線的頂點為A,與x軸交于O,B兩點,在拋物線上是否存在一點P,過PPQx軸于點Q,使得△BPQOAB,如果存在,求出P點坐標,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有單人間、雙人間和三人間三種客房供游客租住,某旅行團有18人準備同時租用這三種客房共9間,且每個房間都住滿,則租房方案共有( )種.

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線yax2+bx+3a0)與x軸交于點A10)和點B(﹣3,0),與y軸交于點C

1)求拋物線的解析式;

2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

3)在(1)中拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由.

4)如圖2,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,∠ACB30°,AC6,現(xiàn)將RtABC繞點A順時針旋轉(zhuǎn)30°得到△ABC′,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2x+c經(jīng)過A(2,0),B(0,2)兩點,動點P,Q同時從原點出發(fā)均以1個單位/秒的速度運動,動點P沿x軸正方向運動,動點Q沿y軸正方向運動,連接PQ,設運動時間為t

(1)求拋物線的解析式;

(2)BQAP時,求t的值;

(3)隨著點P,Q的運動,拋物線上是否存在點M,使△MPQ為等邊三角形?若存在,請求出t的值及相應點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某種品牌的籃球架實物圖與示意圖,已知底座BC0.6米,底座BC與支架AC所成的角∠ACB75°,支架AF的長為2.5米,籃板頂端F點到籃框D的距離FD1.4米,籃板底部支架HE與支架AF所成的角∠FHE60°,求籃框D到地面的距離.(精確到0.1米.參考數(shù)據(jù):cos75°≈0.3,sin75°≈0.9,.tan75°≈3.7,1.71.4

查看答案和解析>>

同步練習冊答案