【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,現(xiàn)將Rt△ABC繞點A順時針旋轉(zhuǎn)30°得到△AB′C′,則圖中陰影部分面積為_____.
【答案】3π﹣3
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC′=AC=6,∠CAC′=30°,繼而可求得DA=DC,過D作DE⊥AC于E,解直角三角形求得DE長,然后根據(jù)扇形和三角形的面積公式進行計算即可求得答案.
∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,
∴∠CAB=60°,
∵Rt△ABC繞點A順時針旋轉(zhuǎn)30°后得到△AB′C′,
∴AC′=AC=6,∠CAC′=30°,
∴∠C′AC=∠ACB,
∴DA=DC,
過D作DE⊥AC于E,
∴CE=AC=3,∠CED=90°,
∴DE=CEtan∠ACB=3tan30°=3×=,
∴圖中陰影部分的面積=S扇形CAC′﹣S△ADC=﹣×6×=3π﹣3,
故答案為:3π﹣3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是邊AD上一點,過點E作EF⊥BC,垂足為點F,將△BEF繞著點E逆時針旋轉(zhuǎn),使點B落在邊BC上的點N處,點F落在邊DC上的點M處,若點M恰好是邊CD的中點,那么 的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果為“A非常了解”、“B了解”、“C基本了解”三個等級,并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下列問題:
(1)本次調(diào)查的人數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)若該市約有市民100萬人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達到“A非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一邊長為1的正方形OABC,邊OA,OC分別在x軸,y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OB1為邊作第三個正方形OB1B2C2,照此規(guī)律作下去,則點B2019的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了給游客提供更好的服務(wù),某景區(qū)隨機對部分游客進行了關(guān)于“景區(qū)服務(wù)工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表.
滿意度 | 人數(shù) | 所占百分比 |
非常滿意 | 12 | 10% |
滿意 | 54 | m |
比較滿意 | n | 40% |
不滿意 | 6 | 5% |
根據(jù)圖表信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為______,表中m的值為_______;
(2)請補全條形統(tǒng)計圖;
(3)據(jù)統(tǒng)計,該景區(qū)平均每天接待游客約3600人,若將“非常滿意”和“滿意”作為游客對景區(qū)服務(wù)工作的肯定,請你估計該景區(qū)服務(wù)工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過弧BD上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tan∠G=,AH=3,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(m,2),B(﹣3,n)兩點關(guān)于原點O對稱,反比例函數(shù)y=的圖象經(jīng)過點A.
(1)求反比例函數(shù)的解析式并判斷點B是否在這個反比例函數(shù)的圖象上;
(2)點P(x1,y1)也在這個反比例函數(shù)的圖象上,﹣3<x1<m且x1≠0,請直接寫出y1的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面內(nèi)有一點P到△ABC的三個頂點的距離分別為PA、PB、PC,若有PA2=PB2+PC2則稱點P為△ABC關(guān)于點A的勾股點.
(1)如圖2,在4×5的網(wǎng)格中,每個小正方形的長均為1,點A、B、C、D、E、F、G均在小正方形的頂點上,則點D是△ABC關(guān)于點 的勾股點;在點E、F、G三點中只有點 是△ABC關(guān)于點A的勾股點.
(2)如圖3,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,
①求證:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度數(shù).
(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,
①若△ADE是等腰三角形,求AE的長;②直接寫出AE+BE的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com