【題目】為了從小華和小亮兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進行測試,兩人在相同條件下各射擊6次,命中的環(huán)數(shù)如下(單位:環(huán)):

小華:7,8,7,8,9,9; 小亮:58,7,8,1010

1)填寫下表:

平均數(shù)(環(huán))

中位數(shù)(環(huán))

方差(環(huán)2

小華

8

小亮

8

3

2)根據(jù)以上信息,你認為教練會選擇誰參加比賽,理由是什么?

3)若小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差 .(填變大、變小、不變

【答案】18,8,;(2)選擇小華參賽.(3)變小

【解析】

1)根據(jù)方差、平均數(shù)和中位數(shù)的定義求解;
2)根據(jù)方差的意義求解;
3)根據(jù)方差公式求解.

1)解:小華射擊命中的平均數(shù):=8,

小華射擊命中的方差:,

小亮射擊命中的中位數(shù):;

2)解:∵小華小亮,S2小華S2小亮

∴選小華參賽更好,因為兩人的平均成績相同,但小華的方差較小,說明小華的成績更穩(wěn)定,所以選擇小華參賽.

3)解:小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差變小.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校一面墻前有一塊空地,校方準備用長的柵欄()圍成一個一面靠墻的長方形花圍,再將長方形分割成六塊(如圖所示) ,已知,,,設

1)用含的代數(shù)式表示: ;

2)當長方形的面積等于時,求的長.

3)若在如圖的甲區(qū)域種植花卉.乙區(qū)域種柏草坪,種柏花卉的成本為每平方米100元,種被草坪的成本為每平方米50元,若種植花卉與草坪的總費用超過6300元,求花圍的寬的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,以BC為直徑的⊙OAC于點D,過點D作⊙O的切線交AB于點M,交CB延長線于點N,連接OMOC1

1)求證:AMMD;

2)填空:

①若DN,則△ABC的面積為   ;

②當四邊形COMD為平行四邊形時,∠C的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBAC,且DB=ACEAC的中點,

1)求證:BC=DE;

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市自開展學習新思想,做好接班人主題閱讀活動以來,受到各校的廣泛關注和同學們的積極響應,某校為了解全校學生主題閱讀的情況,隨機抽查了部分學生在某一周主題閱讀文章的篇數(shù),并制成下列統(tǒng)計圖表.

某校抽查的學生文章閱讀的篇數(shù)統(tǒng)計表

文章閱讀的篇數(shù)()

3

4

5

6

7及以上

人數(shù)()

20

28

m

16

12

請根據(jù)統(tǒng)計圖表中的信息,解答下列問題:

(1)求被抽查的學生人數(shù)和的值;

(2)求本次抽查的學生文章閱讀篇數(shù)的中位數(shù)和眾數(shù);

(3)若該校共有800名學生,根據(jù)抽查結果估計該校學生在這一周內文章閱讀的篇數(shù)為4篇的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形中,,是射線上的點,連接,將沿直線翻折得

1)如圖①,點恰好在上,求證:;

2)如圖②,點在矩形內,連接,若,求的面積;

3)若以點、為頂點的三角形是直角三角形,則的長為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以點為圓心,的長為半徑作,交于點,交的延長線于點.過點,交于點,連接,

1)求證:的切線;

2)填空:

①當四邊形是周長為20的菱形時, ;

②當 時,四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A,CEF,ADBC,DEBF,AECF.

(1)求證:四邊形ABCD是平行四邊形;

(2)直接寫出圖中所有相等的線段(AECF除外).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中有點和某一函數(shù)圖象,過點軸的垂線,交圖象于點,設點,的縱坐標分別為,.如果,那么稱點為圖象的上位點;如果,那么稱點為圖象的圖上點;如果,那么稱點為圖象的下位點.

1)已知拋物線.

在點A(-10),B(0,-2)C(2,3)中,是拋物線的上位點的是 ;

如果點是直線的圖上點,且為拋物線的上位點,求點的橫坐標的取值范圍;

2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個新的圖象,記作圖象.⊙的圓心軸上,半徑為.如果在圖象和⊙上分別存在點和點F,使得線段EF上同時存在圖象的上位點,圖上點和下位點,求圓心的橫坐標的取值范圍.

查看答案和解析>>

同步練習冊答案