【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,且與y軸交于點C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關系式及點C的坐標;
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,當△OEF的面積取得最小值時,求點E的坐標.
【答案】
(1)
解:∵拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,
∴ ,
解得: ,
∴y= x2﹣ x+3;
∴點C的坐標為:(0,3)
(2)
解:假設存在,分兩種情況:
①當△PAB是以A為直角頂點的直角三角形,且∠PAB=90°,
如圖1,過點B作BM⊥x軸于點M,設D為y軸上的點,
∵A(3,0),B(4,1),
∴AM=BM=1,
∴∠BAM=45°,
∴∠DAO=45°,
∴AO=DO,
∵A點坐標為(3,0),
∴D點的坐標為:(0,3),
∴直線AD解析式為:y=kx+b,將A,D分別代入得:
∴0=3k+b,b=3,
∴k=﹣1,
∴y=﹣x+3,
∴y= x2﹣ x+3=﹣x+3,
∴x2﹣3x=0,
解得:x=0或3,
∴y=3,y=0(不合題意舍去),
∴P點坐標為(0,3),
∴點P、C、D重合,
②當△PAB是以B為直角頂點的直角三角形,且∠PBA=90°,
如圖2,過點B作BF⊥y軸于點F,
由(1)得,F(xiàn)B=4,∠FBA=45°,
∴∠DBF=45°,
∴DF=4,
∴D點坐標為:(0,5),B點坐標為:(4,1),
∴直線BD解析式為:y=kx+b,將B,D分別代入得:
∴1=4k+b,b=5,
∴k=﹣1,
∴y=﹣x+5,
∴y= x2﹣ x+3=﹣x+5,
∴x2﹣3x﹣4=0,
解得:x1=﹣1,x2=4(舍),
∴y=6,
∴P點坐標為(﹣1,6),
∴點P的坐標為:(﹣1,6),(0,3);
(3)
解:如圖3:作EM⊥AO于M,
∵直線AC的解析式為:y=﹣x+3,
∴tan∠OAC=1,
∴∠OAC=45°,
∴∠OAC=∠OAF=45°,
∴AC⊥AF,
∵S△FEO= OE×OF,
OE最小時S△FEO最小,
∵OE⊥AC時OE最小,
∵AC⊥AF
∴OE∥AF
∴∠EOM=45°,
∴MO=EM,
∵E在直線CA上,
∴E點坐標為(x,﹣x+3),
∴x=﹣x+3,
解得:x= ,
∴E點坐標為( , ).
【解析】(1)根據(jù)A(3,0),B(4,1)兩點利用待定系數(shù)法求二次函數(shù)解析式;(2)從當△PAB是以A為直角頂點的直角三角形,且∠PAB=90°與當△PAB是以B為直角頂點的直角三角形,且∠PBA=90°,分別求出符合要求的答案;(3)根據(jù)當OE∥AB時,△FEO面積最小,得出OM=ME,求出即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l上有三個正方形a,b,c,若a,c的面積分別為5和11,則b的面積為( )
A. 16 B. 6 C. 55 D. 26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,BD為AC的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接 BG,DF.若AF=8,CF=6,則四邊形BDFG的周長為_______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“六一”兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了10元.
(1)求第一批玩具每套的進價是多少元?
(2)如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校組織學生到距離學校6千米的科技館去參觀,小華因事沒能乘上學校的包車,于是準備在學校門口改乘出租車去科技館,出租車收費標準有兩種類型,如下表:
里程 | 甲類收費(元) | 乙類收費(元) |
3千米以下(包含3千米) | 7.00 | 6.00 |
3千米以上,每增加1千米 | 1.60 | 1.40 |
(1)設出租車行駛的里程為x千米(且x取正整數(shù)),分別寫出兩種類型的總收費(用含x的代數(shù)式表示);
(2)小華身上僅有11元,他乘出租車到科技館車費夠不夠請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,過點D作DE∥AB交BC于點E,若AD=3,BC=10,則CD的長是________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十·一”黃金周期間,武漢動物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化單位:萬人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人數(shù)記為,請用的代數(shù)式表示10月2日的游客人數(shù)?
(2)請判斷七天內(nèi)游客人數(shù)最多的是哪天?請說明理由。
(3)若9月30日的游客人數(shù)為2萬人,門票每人10元。問黃金周期間武漢動物園門票收入是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點A的坐標為(2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是___個單位長度;△AOC與△BOD關于直線對稱,則對稱軸是___;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是___度;
(2)連結AD,交OC于點E,求∠AEO的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為體現(xiàn)社會對教師的尊重,教師節(jié)這天上午,出租車司機小王在東西走向的公路上免費接送老師.如果規(guī)定向東為正,向西為負,出租車的行程如下.(單位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17
(1)當最后一名老師到達目的地時,小王距離開始接送第一位老師之前的地點的距離是多少?
(2)若出租車的耗油量為0.4升/千米,這天上午出租車共耗油多少升?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com