【題目】如圖,在ABC中,ABAC,點D、E、F分別在ABBC、AC BECF,AD+ECAB

1)求證:DEF是等腰三角形;

2)當∠A40°時,求∠DEF的度數(shù).

【答案】1)見解析;(2)∠DEF70°

【解析】

1)求出EC=DB,∠B=C,根據(jù)SAS推出BED≌△CFE,根據(jù)全等三角形的性質得出DE=EF即可;(2)根據(jù)三角形內角和定理求出∠B=C=70°,根據(jù)全等得出∠BDE=FEC,求出∠DEB+FEC=110°,即可得出答案;

1)證明:∵ABAC,

∴∠B=∠C

ABAD+BD,ABAD+EC

BDEC,

在△DBE和△ECF中, ,

∴△DBE≌△ECFSAS

DEEF

∴△DEF是等腰三角形;

2)∵∠A40°,

∴∠B=∠C70°,

∴∠BDE+DEB110°,

又∵△DBE≌△ECF

∴∠BDE=∠FEC,

∴∠FEC+DEB110°,

∴∠DEF70°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:

    序號

項目

1

2

3

4

5

6

筆試成績/

85

92

84

90

84

80

面試成績/

90

88

86

90

80

85

根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折合成綜合成績(綜合成績的滿分仍為100)

16名選手筆試成績的中位數(shù)是________分,眾數(shù)是________分;

2現(xiàn)得知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績各占的百分比;

3求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC為銳角,點D為直線BC上一動點,以AD為直角邊且在AD的右側作等腰直角三角形ADE,∠DAE90°,ADAE

1)如果ABAC,∠BAC90°.①當點D在線段BC上時,如圖1,線段CEBD的位置關系為___________,數(shù)量關系為___________

②當點D在線段BC的延長線上時,如圖2,①中的結論是否仍然成立,請說明理由.

2)如圖3,如果ABAC,∠BAC90°,點D在線段BC上運動。探究:當∠ACB多少度時,CEBC?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1()2 017×161 008;

2(8a6b3)2÷(2a2b)

3)因式分解:a2b-b3

4)因式分解:﹣3x3+6x2y3xy2

5)解方程:

6)解方程: =0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠C=90°DE垂直平分斜邊AB,分別交AB、BCD、E.若∠CAB=∠B+30°,CE=2cm

:1∠AEB 度數(shù).

2BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市教育局為了解我市八年級學生參加社會實踐活動情況,隨機抽查了某縣部分八年級學生第一學期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖(如圖)。

請根據(jù)圖中提供的信息,回答下列問題:

(1)______%,請補全條形圖.

(2)計算出“活動時間為5天”的部分對應的扇形圓心角.

(3)如果該縣共有八年級學生2000人,請你估計“活動時間不少于7天”的學生人數(shù)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等邊三角形ABC中,DAB邊上的動點,以CD為一邊,向上作等邊三角形EDC,連接AE

1)求證:△DBC≌△EAC

2)如圖1,令BC8,ACDE交于點O,當AECE時,求AO的長.

3)如圖2,當圖中的點D運動到邊BA的延長線上,所作△EDC仍為等邊三角形,且有ACCE時,試猜想線段AE與線段CD的位置關系?并說明理由.(自己在圖中畫出圖形后解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,厘米,厘米,點的中點.

1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等, 是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.

2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿三邊運動,求經(jīng)過多長時間點P與點Q第一次在的哪條邊上相遇?

查看答案和解析>>

同步練習冊答案