【題目】如圖,在下列解答中,填寫適當(dāng)?shù)睦碛苫驍?shù)學(xué)式:

1)∵EBDC, (已知)

∴∠DAE=__. ___________________________________

2)∵∠BCF+AFC=180°,(已知)

_______. ___________________________________

3)∵ _______, (已知)

∴∠EFA=ECB . ___________________________________

【答案】(1)D,兩直線平行,內(nèi)錯角相等;(2AD,BC,同旁內(nèi)角互補(bǔ),兩直線平行;(3AD,BC,兩直線平行,同位角相等.

【解析】

根據(jù)平行線的判定,以及證明題的書寫規(guī)則解題即可

解:(1)∵EBDC,(已知)

∴∠DAE=D.兩直線平行,內(nèi)錯角相等

2)∵∠BCF+AFC=180°,(已知)

ADBC. 同旁內(nèi)角互補(bǔ),兩直線平行;

3)∵ADBC(已知)

∴∠EFA=ECB .兩直線平行,同位角相等

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,D=90°,第一次探測到一輛轎車從B點勻速向D點行駛,測得∠ABD=31°,2秒后到達(dá)C點,測得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求B,C的距離.

2)通過計算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:

請根據(jù)圖中提供的信息,解答下列問題:

(1)求被調(diào)查的學(xué)生總?cè)藬?shù);

(2)補(bǔ)全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);

(3)若該校共有800名學(xué)生,請估計“最想去景點B“的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點E在直線BC上,連接AE.將△ABE沿AE所在直線折疊,點B的對應(yīng)點是點B′,連接AB′并延長交直線DC于點F.

(1)當(dāng)點F與點C重合時如圖1,證明:DF+BE=AF;

(2)當(dāng)點FDC的延長線上時如圖2,當(dāng)點FCD的延長線上時如圖3,線段DF、BE、AF有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線y=﹣x+b與坐標(biāo)軸交于C,D兩點,直線AB與坐標(biāo)軸交于A,B兩點,線段OA,OC的長是方程x2﹣3x+2=0的兩個根(OA>OC).

(1)求點A,C的坐標(biāo);

(2)直線AB與直線CD交于點E,若點E是線段AB的中點,反比例函數(shù)y=(k≠0)的圖象的一個分支經(jīng)過點E,求k的值;

(3)在(2)的條件下,點M在直線CD上,坐標(biāo)平面內(nèi)是否存在點N,使以點B,E,M,N為頂點的四邊形是菱形?若存在,請直接寫出滿足條件的點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BP= cmCQ= cm

2)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;

3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

4)若點Q以(3)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCE;AFG=∠AGF;FAG2ACF;BHCH.其中所有正確結(jié)論的序號是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】程大位是我國明朝商人,珠算發(fā)明家,他60歲時完成的《直指算法綜宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾丁,意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,則小和尚有__________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知.C在點的右側(cè), ,平分么,平分所在的直線交于點,之間。

(1)如圖1,點在點A的左側(cè),若 ,的度數(shù)?

(2)如圖2,在點A的右側(cè),若,直接寫出的大小.

查看答案和解析>>

同步練習(xí)冊答案