【題目】如圖,在△ABC中,AB=AC,BD是AC邊上的中線,AE⊥BC,垂足為點E,交BD于F,cos∠ABC=,AB=13.
(1)求AE的長;
(2)求tan∠DBC的值.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據AE⊥BC,垂足為點E,交BD于F,cos∠ABC= ,AB=13,可以求得BE的長,從而可以求得AE的長;
(2)根據在△ABC中,AB=AC,BD是AC邊上的中線,AE⊥BC,可知AE、BD為△ABC的中線,從而可以利用重心定理得到EF的長,由AE⊥BC,從而可以得到tan∠DBC的值.
解:(1)∵AE⊥BC,
∴∠AEB=90°.
∵cos∠ABC=,AB=13,
∴BE=5.
∵在Rt△BEA中,BE2+AE2=AB2,
∴AE= =12.
(2)∵AB=AC,AE⊥BC,
∴AE是BC邊上的中線.
又∵BD是AC邊上的中線,
∴F是△ABC的重心.
∵AE=12,
∴EF=AE=4.
∵Rt△BEF中,BE=5,EF=4,
∴tan∠DBC=.
科目:初中數學 來源: 題型:
【題目】建立適當的坐標系,運用函數知識解決下面的問題:
如圖,是某條河上的一座拋物線形拱橋,拱橋頂部點E到橋下水面的距離EF為3米時,水面寬AB為6米,一場大雨過后,河水上漲,水面寬度變?yōu)?/span>CD,且CD=2米,此時水位上升了多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.
(1)求拋物線的解析式;
(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;
(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在中,,,.點從點開始沿邊向點以的速度移動,同時點從點開始沿邊向點以的速度移動.當一個點到達終點時另一點也隨之停止運動,設運動時間為秒,
求幾秒后,的面積等于?
求幾秒后,的長度等于?
運動過程中,的面積能否等于?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的頂點 在 軸負半軸上,頂點在軸正半軸上,頂點 在第一象限,線段 , 的長是一元二次方程 的兩根,,.
(1)直接寫出點的坐標 點 C 的坐標 ;
(2)若反比例函數的圖象經過點,求 的值;
(3)如圖過點作 軸于點 ;在軸上是否存在點 ,使以,, 為頂點的三角形與以,,為頂點的三角形相似?若存在,直接寫出滿足條件的點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明鍛煉健身,從A地勻速步行到B地用時25分鐘.若返回時,發(fā)現走一小路可使A、B兩地間路程縮短200米,便抄小路以原速返回,結果比去時少用2.5分鐘.
(1)求返回時A、B兩地間的路程;
(2)若小明從A地步行到B地后,以跑步形式繼續(xù)前進到C地(整個鍛煉過程不休息).據測試,在他整個鍛煉過程的前30分鐘(含第30分鐘),步行平均每分鐘消耗熱量6卡路里,跑步平均每分鐘消耗熱量10卡路里;鍛煉超過30分鐘后,每多跑步1分鐘,多跑的總時間內平均每分鐘消耗的熱量就增加1卡路里.測試結果,在整個鍛煉過程中小明共消耗904卡路里熱量.問:小明從A地到C地共鍛煉多少分鐘?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.點A2,B2,C2分別是邊B1C1,A1C1,A1B1的中點;點A3,B3,C3分別是邊B2C2,A2C2,A2B2的中點;…;以此類推,則第2019個三角形的周長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=(),將線段BC繞點B逆時針旋轉60°得到線段BD。
(1)如圖1,直接寫出∠ABD的大。ㄓ煤的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結DE,若∠DEC=45°,求的值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com