【題目】如圖,在數(shù)軸上點表示的數(shù)是點在點的右側(cè),且到點的距離是18;點在點與點之間,且到點的距離是到點距離的2倍.
(1)點表示的數(shù)是____________;點表示的數(shù)是_________;
(2)若點P從點出發(fā),沿數(shù)軸以每秒4個單位長度的速度向右勻速運動;同時,點Q從點B出發(fā),沿數(shù)軸以每秒2個單位長度的速度向左勻速運動。設(shè)運動時間為秒,在運動過程中,當為何值時,點P與點Q之間的距離為6?
(3)在(2)的條件下,若點P與點C之間的距離表示為PC,點Q與點B之間的距離表示為在運動過程中,是否存在某一時刻使得?若存在,請求出此時點表示的數(shù);若不存在,請說明理由.
【答案】(1)15, 3;(2)t=2或4;(3)1或
【解析】
(1)利用數(shù)軸建立原點,再用AC和BC之間的關(guān)系即可求解;
(2)這里需要注意,存在2種情況使得P與點Q之間的距離為6,利用數(shù)軸將含t的表達式求解即可;
(3)先將PC+QB=4當做已知條件,再將PC和QB的算式代入求解即可.
(1)由題意可得:AB=18, A0=3(0為原點),
∴B0=AB-A0=15,
∵BC=2AC,
∴B0-0C=2(A0+0C),
∴0C=3.
故答案為:15, 3
(2)由題意可得:存在2種情況點P與點Q之間的距離為6,
①點P與點Q相遇前,18-6=(4+2)t ,則t=2秒;
②點P與點Q相遇后,18+6=(4+2)t ,則t=4秒.
故答案為:t=2或4.
(3)由題意可得:AC=6,PC=│6-4t│,QB=2t,
若PC+QB=4,
則│6-4t│+2t=4,
解得t=1或
故答案為:點表示的數(shù)是1或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某加工廠以每噸3000元的價格購進50噸原料進行加工.若進行粗加工,每噸加工費用為600元,需 天,每噸售價4000元;若進行精加工,每噸加工費用為900元,需 天,每噸售價4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.
(1)請完成表格并求出y與x的函數(shù)關(guān)系式(不要求寫自變量的范圍); 表一
粗加工數(shù)量/噸 | 3 | 7 | x |
精加工數(shù)量/噸 | 47 |
表二
粗加工數(shù)量/噸 | 3 | 7 | x |
粗加工獲利/元 | 2800 | ||
精加工獲利/元 | 25800 |
y與x的函數(shù)關(guān)系式
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M,N分別是斜邊AB,DE的中點,點P為AD的中點,連接AE、BD、MN.
(1)求證:△PMN為等腰直角三角形;
(2)現(xiàn)將圖①中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP,BD分別交于點G、H,請判斷①中的結(jié)論是否成立,若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,反比例函數(shù)y= 的圖像與正比例函數(shù)y=kx(k≠0)的圖像相交于橫坐標為2的點A,平移直線OA,使它經(jīng)過點B(3,0).
(1)求平移后直線的表達式;
(2)求OA平移后所得直線與雙曲線的交點坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點為網(wǎng)格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關(guān)于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點M、N是∠ABC與∠ACB三等分線的交點.若∠A=60°,則∠BMN的度數(shù)為( )
A. 45° B. 50° C. 60° D. 65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點為網(wǎng)格線的交點),以及過格點的直線l.
(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.
(2)畫出△DEF關(guān)于直線l對稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系中,一次函數(shù)y= x+3的圖像與y軸交于點A,點M在正比例函數(shù)y= x的圖像x>0的那部分上,且MO=MA(O為坐標原點).
(1)求線段AM的長;
(2)若反比例函數(shù)y= 的圖像經(jīng)過點M關(guān)于y軸的對稱點M′,求反比例函數(shù)解析式,并直接寫出當x>0時, x+3與 的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com