【題目】在下列各組條件中,不能說明的是(

A.AB=DE,∠B=E,∠C=FB.AB=DE,∠A=D,∠B=E

C.AC=DF,BC=EF,∠A=DD.AB=DE,BC=EFAC=ED

【答案】C

【解析】

根據(jù)各個選項和全等三角形的判定可以解答本題.

AB=DE,B=E,C=F,根據(jù)AAS可以判定ABC≌△DEF,故選項A不符合題意;

AB=DE,A=D,B=E,根據(jù)ASA可以可以判定ABC≌△DEF,故選項B不符合題意;

AC=DF,BC=EF,A=D,根據(jù)SSA不可以判定ABC≌△DEF,故選項C符合題意;

AB=DE,BC=EF,AC=ED,根據(jù)SSS可以可以判定ABC≌△DEF,故選項D不符合題意;

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小明先從盒子里隨機(jī)取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個小球,記下數(shù)字為y.

(1)用列表法表示出(x,y)的所有可能出現(xiàn)的結(jié)果;

(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在反比例函數(shù)y=的圖象上的概率;

(3)求小明、小華各取一次小球所確定的數(shù)x,y滿足y的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:我們把對角線相等的四邊形叫做和美四邊形.

請舉出一種你所學(xué)過的特殊四邊形中是和美四邊形的例子.

如圖1,E,F,GH分別是四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),已知四邊形EFGH是菱形,求證:四邊形ABCD是和美四邊形;

如圖2,四邊形ABCD是和美四邊形,對角線AC,BD相交于O,E、F分別是AD、BC的中點(diǎn),請?zhí)剿?/span>EFAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是( 。

A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教研機(jī)構(gòu)為了了解在校初中生閱讀數(shù)學(xué)教科書的現(xiàn)狀,隨機(jī)抽取某校部分初中學(xué)生進(jìn)行了調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成不完整的統(tǒng)計表,請根據(jù)圖表中的信息解答下列問題.

1)樣本容量為 ,表格中c的值為 ,并補(bǔ)全統(tǒng)計圖;

2)若該校共有初中生2300名,請估計該校不重視閱讀數(shù)學(xué)教科書的初中人數(shù)為 ;

3)根據(jù)上面的數(shù)據(jù)統(tǒng)計結(jié)果,談?wù)勀銓υ撔3踔猩喿x數(shù)學(xué)教科書的現(xiàn)狀的看法及建議;如果要了解全省初中生閱讀數(shù)學(xué)教科書的情況,你認(rèn)為應(yīng)該如何進(jìn)行抽樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開始上課時,學(xué)生的注意力逐步增強(qiáng),中間有一段時間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB,BC分別為線段,CD為雙曲線的一部分):

(1)分別求出線段AB和曲線CD的函數(shù)關(guān)系式;

(2)開始上課后第五分鐘時與第三十分鐘時相比較,何時學(xué)生的注意力更集中?

(3)一道數(shù)學(xué)競賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)、分別是正方形的邊、上的點(diǎn),且,、相交于點(diǎn),下列結(jié)論:①;②;③,其中一定正確的有( )

A. 0個B. 1個C. 2個D. 3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC,BAC=60°點(diǎn)P為邊BC的中點(diǎn),分別以ABAC為斜邊向外作Rt△ABDRt△ACEDAB=∠EAC,連結(jié)PDPE,DE

1)如圖1,α=45°,=   ;

2)如圖2α為任意角度,求證PDE;

3)如圖3,α=15°AB=8,AC=6,PDE的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說明理由;

(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請求出點(diǎn)H的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案