【題目】如圖,在中,、兩點(diǎn)分別在邊、上,,與相交于點(diǎn),若的面積為,則的面積為________.
【答案】6
【解析】
過點(diǎn)D作DG//BE交AC于點(diǎn)G,根據(jù)等高的兩個三角形底邊的關(guān)系,可得兩個三角形面積的關(guān)系,根據(jù)相似三角形判定與性質(zhì),可得AE:EG=AF:FD=3:4,根據(jù)比例的性質(zhì),可得AF:AD=3:7,再根據(jù)等高的兩個三角形底邊的關(guān)系,可得兩個三角形面積的關(guān)系.
過點(diǎn)D作DG//BE交AC于點(diǎn)G,
∵AE:EC=CD:BD=1:2,△ABC的面積為21,
∴S△ABE:S△BCE=S△ADC:S△ABD=1:2,
∴S△ABD=S△ABC=×21=14,
∵DG∥BE,
∴△CDG∽△CBE,△AEF∽△AGD,
∴,
GE=CE,AE=CE,
∴AE:EG=AF:FD=3:4,
∴AF:AD=3:7,
∴S△ABF:S△ABD=3:7,
∴S△ABF=S△ABD=×14=6,
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=﹣x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,頂點(diǎn)為D的拋物線y=﹣x2+2mx﹣3m經(jīng)過點(diǎn)A,交x軸于另一點(diǎn)C,連接BD,AD,CD,如圖所示.
(1)直接寫出拋物線的解析式和點(diǎn)A,C,D的坐標(biāo);
(2)動點(diǎn)P在BD上以每秒2個單位長的速度由點(diǎn)B向點(diǎn)D運(yùn)動,同時動點(diǎn)Q在CA上以每秒3個單位長的速度由點(diǎn)C向點(diǎn)A運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)停止運(yùn)動時,另一個點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t秒.PQ交線段AD于點(diǎn)E.
①當(dāng)∠DPE=∠CAD時,求t的值;
②過點(diǎn)E作EM⊥BD,垂足為點(diǎn)M,過點(diǎn)P作PN⊥BD交線段AB或AD于點(diǎn)N,當(dāng)PN=EM時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P是半徑為5的⊙O內(nèi)點(diǎn),OP=3,在過點(diǎn)P的所有弦中,弦長為整數(shù)的弦的條數(shù)為______條。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求證:△BCE≌△DCF;
(2)若AB=15,AD=7,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知中,點(diǎn)在邊上,交邊于點(diǎn),且平分.
(1)求證:;
(2)如圖2,在邊上取點(diǎn),使,若,,求的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一塊含45°的直角三角板ABC, AB=AC, ∠BAC=90°, 點(diǎn)D為射線CB上一點(diǎn),且不與點(diǎn)C,點(diǎn)B重合,連接AD.過點(diǎn)A作線段AD的垂線l,在直線l上,截取AE=AD(點(diǎn)E與點(diǎn)C在直線AD的同側(cè)),連接CE.
(1)當(dāng)點(diǎn)D在線段CB上時,如圖1,線段CE與BD的數(shù)量關(guān)系為____________,位置關(guān)系為___________;
(2)當(dāng)點(diǎn)D在線段CB的延長線上時,如圖2,
①請將圖形補(bǔ)充完整;
②(1)中的結(jié)論是否仍成立?如果成立,請證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com