【題目】如圖,已知A點坐標為(5,0),直線ykx+b(b0)y軸交于點B,∠BCA60°,連接AB,∠α105°,則直線ykx+b的表達式為( )

A. B. C. D.

【答案】B

【解析】

根據(jù)等腰直角三角形的性質(zhì)和三角函數(shù)分別求B、C兩點的坐標,利用待定系數(shù)法求直線的表達式.

A點坐標為(5,0),

OA5,

∵∠BCA60°,∠α105°,

∴∠BAC105°60°45°,

∴△AOB是等腰直角三角形,

AOBO5,

B(0,5)

∵∠CBO90°﹣∠BCA30°,

BC2CO,BOCO5

CO,

C(,0),

B(0,5)C(,0)代入ykx+b中得:,

解得:

∴直線BC的表達式為:yx+5

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省某旅游景點的旅客人數(shù)逐年增加,據(jù)旅游部門統(tǒng)計,2016年約為120萬人次,預(yù)計2018年約為170萬人次,設(shè)游客人數(shù)年平均增長率為x,則下列方程中正確的是( 。

A. 120(1+x)=170 B. 170(1﹣x)=120

C. 120(1+x)2=170 D. 120+120(1+x)+120(1+x)2=170

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(組)

12x13+16=0

2;

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過點B,且ABx軸.

(1)求a和k的值;

(2)過點B作MNOA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中∠C=90°,BAC=30°,AB=8,以2為邊長的正方形DEFG的一邊GD在直線AB上,且點D與點A重合,現(xiàn)將正方形DEFG沿A﹣B的方向以每秒1個單位的速度勻速運動,當點D與點B重合時停止,則在這個運動過程中,正方形DEFGABC的重合部分的面積S與運動時間t之間的函數(shù)關(guān)系圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DAAB于點A,CBAB于點B,已知DA15 km,CB10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得CD兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

如圖,ABCD,ADBC,BE平分∠ABC,DF平分∠ADC

求證:BEDF

證明:∵ABCD,(已知)

∴∠ABC+∠C180°.(   

又∵ADBC,(已知)

   +∠C180°.(   

∴∠ABC=∠ADC.(   

BE平分∠ABC,(已知)

∴∠1ABC.(   

同理,∠2ADC

   =∠2

ADBC,(已知)

∴∠2=∠3.(   

∴∠1=∠3,

BEDF.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣4ax+1

(1)寫出二次函數(shù)圖象的對稱軸:_____;

(2)如圖,設(shè)該函數(shù)圖象交x軸于點A、B(BA的右側(cè)),交y軸于點C.直線y=kx+b經(jīng)過點B、C.

①如果k=﹣,求a的值

②設(shè)點P在拋物線對稱軸上,PC+PB的最小值為,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,在平行四邊形 ABCD DAB 的平分線交CD 于點 E ,交 BC 的延長線于點G ,ABC的平分線交CD 于點 F ,交 AD 的延長線于點 H ,交 AG BH 成交于點O ,連接 BE 。下列結(jié)論錯誤的是(

A.BO OHB.DF CEC.DH CGD.AB AE

查看答案和解析>>

同步練習(xí)冊答案