【題目】如圖,菱形ABCD的邊長(zhǎng)為4cm,∠A=60°,弧BD是以點(diǎn)A為圓心,AB長(zhǎng)為半徑的弧,弧CD是以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧,則陰影部分的面積為( 。
A. 2cm2B. 4cm2C. 4cm2D. πcm2
【答案】B
【解析】
連接BD,判斷出△ABD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ABD=60°,再求出∠CBD=60°,DB=BC=AD,從而確定S扇形BDC=S扇形ABD,然后求出陰影部分的面積=S扇形BDC-(S扇形ABD-S△ABD)=S△ABD,計(jì)算即可得解.
解:如圖,連接BD,
∵四邊形ABCD是菱形,
∴AB=AD=BC,
∵∠A=60°,
∴△ABD是等邊三角形,
∴∠ADB=60°,AD=DB=BC=4
又∵菱形的對(duì)邊AD∥BC,
∴∠CBD=∠ADB=60°,
∴S扇形BDC=S扇形ABD
∴S陰影=S扇形BDC-(S扇形ABD-S△ABD)=S△ABD==4cm2.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,將點(diǎn)P繞點(diǎn)T(t,0)(1>0)旋轉(zhuǎn)180°得到點(diǎn)Q,則稱(chēng)點(diǎn)Q為點(diǎn)P的“發(fā)展點(diǎn)”.
(1)當(dāng)t=2時(shí),點(diǎn)(0,0)的“發(fā)展點(diǎn)”坐標(biāo)為______,點(diǎn)(-1,-1)的“發(fā)展點(diǎn)”坐標(biāo)為______.
(2)若t>3,則點(diǎn)(3,4)的“發(fā)展點(diǎn)”的橫坐標(biāo)為______(用含t的代數(shù)式表示).
(3)若點(diǎn)P在直線y=2x+6上,其“發(fā)展點(diǎn)”Q在直線y=2x-8上,求點(diǎn)T的坐標(biāo).
(4)點(diǎn)P(3,3)在拋物線y=-x2+k上,點(diǎn)M在這條拋物線上,點(diǎn)Q為點(diǎn)P的“發(fā)展點(diǎn)”.若△PMQ是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形,P為射線上的一點(diǎn),以為邊作正方形,使點(diǎn)F在線段的延長(zhǎng)線上,連接.
(1)如圖1,若點(diǎn)P在線段的延長(zhǎng)線上,判斷的形狀,并說(shuō)明理由;
(2)如圖2,若點(diǎn)P在線段上
①若點(diǎn)P是線段的中點(diǎn),判斷的形狀,并說(shuō)明理由;
②當(dāng)時(shí),請(qǐng)直接寫(xiě)出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)綜合實(shí)踐課上,老師提出問(wèn)題:如圖,有一張長(zhǎng)為4dm,寬為3dm的長(zhǎng)方形紙板,在紙板四個(gè)角剪去四個(gè)相同的小正方形,然后把四邊折起來(lái)(實(shí)線為剪裁線,虛線為折疊線),做成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,問(wèn)小正方形的邊長(zhǎng)為多少時(shí),盒子的體積最大?為了解決這個(gè)問(wèn)題,小明同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),進(jìn)行了如下的探究:
(1)設(shè)小正方形的邊長(zhǎng)為xdm,長(zhǎng)方體體積為ydm3,根據(jù)長(zhǎng)方體的體積公式,可以得到y與x的函數(shù)關(guān)系式是 ,其中自變量x的取值范圍是 .
(2)列出y與x的幾組對(duì)應(yīng)值如下表:
x/dm | … | 1 | … | |||||||||
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(注:補(bǔ)全表格,保留1位小數(shù)點(diǎn))
(3)如圖,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中描出以補(bǔ)全后表格中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)圖象;
(4)結(jié)合函數(shù)圖象回答:當(dāng)小正方形的邊長(zhǎng)約為 dm時(shí),無(wú)蓋長(zhǎng)方體盒子的體積最大,最大值約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市304國(guó)道通遼至霍林郭勒段在修建過(guò)程中經(jīng)過(guò)一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以AB為直徑的圓交AC、BC與點(diǎn)E和點(diǎn)D,AB=6,且E為AC的中點(diǎn),過(guò)E點(diǎn)作
(1)求的值
(2)連接OF并求OF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算: ﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化簡(jiǎn),再求值 (a2﹣b2),其中a=,b=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸的負(fù)半軸相交于點(diǎn),將拋物線平移得到拋物線,與相交于點(diǎn),直線交于點(diǎn),且.
(1)求點(diǎn)的坐標(biāo);
(2)寫(xiě)出一種將拋物線平移到拋物線的方法;
(3)在軸上找點(diǎn),使得的值最小,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為矩形,AB=4cm,AD=3cm,動(dòng)點(diǎn)M,N分別從點(diǎn)D,B同時(shí)出發(fā),都以1cm/s的速度運(yùn)動(dòng).點(diǎn)M沿DA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)N作NP⊥BC,交AC于點(diǎn)O,連接MP.已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了ts(0<t<3).
(1)當(dāng)t為多少時(shí),PM∥AB?
(2)若四邊形CDMP的面積為S,試求S與t的函數(shù)關(guān)系式.
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t使四邊形CDMP面積與四邊形ABCD面積比為3:8?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)在點(diǎn)M,N運(yùn)動(dòng)過(guò)程中,△MPA能否成為一個(gè)等腰三角形?若能,求出所有可能的t值;若不能,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com