【題目】如圖,在銳角ABC中,AC是最短邊.以AC為直徑的⊙O,交BCD,過OOEBC,交ODE,連接AD、AE、CE.

(1)求證:∠ACE=DCE;

(2)若∠B=45°,BAE=15°,求∠EAO的度數(shù);

(3)若AC=4,,求CF的長(zhǎng).

【答案】(1)證明見解析,(2)60°;(3)

【解析】

1易證∠OEC=OCE,OEC=ECD,從而可知∠OCE=ECD即∠ACE=DCE;

2)延長(zhǎng)AEBC于點(diǎn)G,易證∠AGC=B+∠BAG=60°,由于OEBC,所以∠AEO=AGC=60°,所以∠EAO=AEO=60°;

3易證,由于所以=,由圓周角定理可知∠AEC=FDC=90°,從而可證明△CDF∽△CEA,利用三角形相似的性質(zhì)即可求出答案

1OC=OE,∴∠OEC=OCE

OEBC,∴∠OEC=ECD,∴∠OCE=ECD,即∠ACE=DCE;

2)延長(zhǎng)AEBC于點(diǎn)G

∵∠AGC是△ABG的外角,∴∠AGC=B+∠BAG=60°.

OEBC,∴∠AEO=AGC=60°.

OA=OE∴∠EAO=AEO=60°.

3OAC中點(diǎn),

=

AC是直徑,∴∠AEC=FDC=90°.

∵∠ACE=FCD,∴△CDF∽△CEA,=,CF=CA=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在線段BC上,ABBCDCBC,∠AED90°,且AEDE

1)求證:ABE≌△ECD

2)直接寫出線段AB、BCCD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),OBD的中點(diǎn),PO的延長(zhǎng)線交BC于點(diǎn)Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點(diǎn)A出發(fā),以1cm/秒的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);并求當(dāng)t為何值時(shí),四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BDAE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點(diǎn),且AE=BC,過點(diǎn)AADCA,垂足為A,且AD=ACAB、DE交于點(diǎn)F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直線y=x向下平移b個(gè)單位長(zhǎng)度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點(diǎn)A,與x軸相交于點(diǎn)B,則OA2﹣OB2=10,則k的值是( 。

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時(shí)后,兩車相距多少千米?

(5)行駛多長(zhǎng)時(shí)間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線OD與x軸所夾的銳角為30°,OA1的長(zhǎng)為2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三邊形,點(diǎn)A1、A2、A3…An1在x軸正半軸上依次排列,點(diǎn)B1、B2、B3…Bn在直線OD上依次排列,那么點(diǎn)B2的坐標(biāo)為____,點(diǎn)Bn的坐標(biāo)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別以AC、BC為邊作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)O.

(1)求證:△ACE≌△DCB;

(2)求∠AOB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案