已知拋物線y=-(x+2)2+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,C點(diǎn)在y軸的正半軸上,線段OB、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)在平面直角坐標(biāo)系內(nèi)畫(huà)出拋物線的大致圖象并標(biāo)明頂點(diǎn)坐標(biāo);
(3)連AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),過(guò)E作EF∥AC交BC于F,連CE,設(shè)AE=m,△CEF的面積為S,求S與m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上說(shuō)明S是否存在最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)根據(jù)方程的兩個(gè)根及函數(shù)的對(duì)稱軸,易求A,B,C三點(diǎn)坐標(biāo);
(2)求出函數(shù)解析式,根據(jù)定點(diǎn)畫(huà)出平滑的曲線;
(3)由勾股定理求出AC的長(zhǎng),由三角形內(nèi)的平行關(guān)系,得到一個(gè)比例關(guān)系,從而求出EF,作輔助線把△CEF的面積用m表示出來(lái),再求出其最值,并求出頂點(diǎn)坐標(biāo),也解決了第三問(wèn).
解答:解:(1)方程x2-10x+16=0的兩根為x1=8,x2=2,
∴OB=2,OC=8,
∴B(2,0)C(0,8)
∵函數(shù)y=-(x+2)2+k的對(duì)稱軸為x=-2,
∴A(-6,0),
即A(-6,0)B(2,0)C(0,8).(3分)

(2)B點(diǎn)在y=-(x+2)2+k上,
∴0=-(2+2)2+k,
∴k=.(5分)
函數(shù)解析式為y=-(x+2)2+,
頂點(diǎn)坐標(biāo)為-2,),大致圖象及頂點(diǎn)坐標(biāo)如右.(7分)

(3)∵AE=m,AB=8,
∴BE=8-m,
∵OC=8,OA=6,據(jù)勾股定理得AC=10,
∵AC∥EF,
,EF=,(10分)
過(guò)F作FG⊥AB于G,
∵sin∠CAB=sin∠FEB=,
而sin∠FEB=,
∴FG=8-m.  12分
∵S=S△CEB-S△FEB=×BE×OC-×BE×FG=-m2+4m,
∴S與m的函數(shù)關(guān)系式為S=-m2+4m,m的取值為0<m<8.

(4)∵S=-m2+4m中-
∴S有最大值.
S=-(m-4)2+8,當(dāng)m=4時(shí),S有最大值為8,
E點(diǎn)坐標(biāo)為:E(-2,0),
∵B(2,0),E(-2-,0),
∴CE=CB
∴△BCE為等腰三角形.
點(diǎn)評(píng):此題考查拋物線性質(zhì)及對(duì)稱軸,因圖形很特殊,把具體問(wèn)題轉(zhuǎn)化到直角三角形中來(lái)解,注意直線平行的應(yīng)用,最后把求面積最值轉(zhuǎn)化到求函數(shù)最值問(wèn)題,要學(xué)會(huì)這種做題思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的精英家教網(wǎng)正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個(gè)根(x1<x2),且△ABC的面積為
152

(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過(guò)點(diǎn)P作直線y=m(m為常數(shù)),與直線BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)廊橋是我國(guó)古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-
140
x2+10,為保護(hù)廊橋的安全,在該拋物線上距水面AB高為8米的點(diǎn)E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2(a>0)上有A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1,2.如果△AOB(O是坐標(biāo)原點(diǎn))是直角三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線經(jīng)過(guò)點(diǎn)A(1,0)、B(2,-3)、C(0,4)三點(diǎn).
(1)求此拋物線的解析式;
(2)如果點(diǎn)D在這條拋物線上,點(diǎn)D關(guān)于這條拋物線對(duì)稱軸的對(duì)稱點(diǎn)是點(diǎn)C,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案