【題目】關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題:
①當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;
②當(dāng)c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;
③函數(shù)圖象最高點的縱坐標(biāo)是;
④當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.
其中正確命題的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
【答案】C
【解析】
試題分析:解:(1)c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;
(2)c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;
(3)當(dāng)a<0時,函數(shù)圖象最高點的縱坐標(biāo)是;當(dāng)a>0時,函數(shù)圖象最低點的縱坐標(biāo)是;由于a值不定,故無法判斷最高點或最低點;
(4)當(dāng)b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.三個正確,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合實踐課上,某小組同學(xué)將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長.
(1)如圖1,已知等腰直角三角形紙片△ABC,∠ACB=90°,AC=BC,同學(xué)們通過構(gòu)造直角三角形的辦法求出三角形三邊的長,則AB=__________;
(2)如圖2,已知直角三角形紙片△DEF,∠DEF=90°,EF=2DE,求出DF的長;
(3)在(2)的條件下,若橫格紙上過點E的橫線與DF相交于點G,直接寫出EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點,以點O為圓心,OB長為半徑作圓,恰好經(jīng)過點A,并與BC交于點D.
(1)求證:CA是⊙O的切線.
(2)若AB=2,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口B位于港口A的南偏東方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行km,到達E處,測得燈塔C在北偏東方向上.這時,E處距離港口A有多遠?(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.
(1)將△ABC向右移平2個單位長度,作出平移后的△A1B1C1,并寫出△A1B1C1各頂點的坐標(biāo);
(2)若將△ABC繞點(-1,0)順時針旋轉(zhuǎn)180°后得到△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo);
(3)求出三角形ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正確的結(jié)論是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在正方形 ABCD 中,∠FAG=45°,請直接寫出 DG,BF 與FG 的數(shù)量關(guān)系,不需要證明.
(2)如圖,在 Rt△ABC 中,∠BAC=90°,AB=AC,E,F 分別是 BC 上兩點,∠EAF=45°,
①寫出 BE,CF,EF 之間的數(shù)量關(guān)系,并證明.
②若將(2)中的△AEF 繞點 A 旋轉(zhuǎn)至如圖所示的位置,上述結(jié)論是否仍然成立? 若不成立,直接寫出新的結(jié)論 ,無需證明.
(3)如圖,△AEF 中∠EAF=45°,AG⊥EF 于 G,且GF=2,GE=3,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(1)求這個函數(shù)的解析式;
(2)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(3)當(dāng)-3<x<-1時,求y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com