【題目】解方程組:
(1)
(2)
(3)
(4)
【答案】(1);(2);(3);(4)
【解析】
(1)先將①式乘以3,得到③式,然后利用加減消元法求解即可;
(2)將②變形為y=3x+1,得到③式,將③式代入①中求解即可;
(3)先對(duì)原方程進(jìn)行去括號(hào),變形整理之后利用加減消元法求解即可;
(4)先對(duì)原方程進(jìn)行去分母,變形整理之后利用加減消元法求解即可.
解:(1)
將①×3得,③
用③-②可得,7y=21,
解得:y=3,
將y=3代入①中可得,x+9=11,
解得:x=2,
故原方程組的解為:
(2)
由②得y=3x+1③
將③代入①中得:x+2(3x+1)=9
解得:x=1,
將x=1代入③中可得:y=4,
故原方程組的解為:
(3)
對(duì)原方程進(jìn)行變形整理可得:,
由②-①可得:y=7,
將y=1代入①中,可得x=5,
故原方程組的解為:
(4)
對(duì)原方程進(jìn)行變形整理可得:
由①+②可得:6x=18,
解得:x=3,
將x=3代入①中可得:,
故原方程組的解為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子里有標(biāo)號(hào)分別為1,2,3,4,5,6的六個(gè)小球,這些小球除標(biāo)號(hào)數(shù)字外都相同.
(1)從盒中隨機(jī)摸出一個(gè)小球,求摸到標(biāo)號(hào)數(shù)字為奇數(shù)的小球的概率;
(2)甲、乙兩人用這六個(gè)小球玩摸球游戲,規(guī)則是:甲從盒中隨機(jī)摸出一個(gè)小球,記下標(biāo)號(hào)數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機(jī)摸出一個(gè)小球,并記下標(biāo)號(hào)數(shù)字.若兩次摸到小球的標(biāo)號(hào)數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到小球的標(biāo)號(hào)數(shù)字為一奇一偶,則判乙贏.請(qǐng)用列表法或畫樹狀圖的方法說明這個(gè)游戲?qū)、乙兩人是否公平?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=5cm,AC⊥AB,BD⊥AB,AC=BD=4cm,點(diǎn)P在線段AB上以1cm/s的速度由A向B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng),它們運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P速度相等,當(dāng)t=1,△ACP與△BPQ是否全等?請(qǐng)說明理由,并推導(dǎo)出此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=α°”,其他條件不變,設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為xcm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接等邊三角形,點(diǎn)D、E在圓上,四邊形BCDE為矩形,這個(gè)矩形的面積是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某游樂場的摩天輪(圓形轉(zhuǎn)盤)上的點(diǎn)距離地面最大高度為160米,轉(zhuǎn)盤直徑為153米,旋轉(zhuǎn)一周約需30分鐘.某人從該摩天輪上到地面距離最近的點(diǎn)登艙,逆時(shí)針旋轉(zhuǎn)20分鐘,此時(shí),他離地面的高度是米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中點(diǎn)、平行線、等腰直角三角形、等邊三角形都是常見的幾何圖形!
(1)如圖1,若點(diǎn)D為等腰直角三角形ABC斜邊BC的中點(diǎn),點(diǎn)E,F(xiàn)分別在AB、AC邊上,且∠EDF=90°,連接AD、EF,當(dāng)BC=5 ,F(xiàn)C=2時(shí),求EF的長度;
(2)如圖2,若點(diǎn)D為等邊三角形ABC邊BC的中點(diǎn),點(diǎn)E,F(xiàn)分別在AB,AC邊上,且∠EDF=90°;M為EF的中點(diǎn),連接CM,當(dāng)DF∥AB時(shí),證明:3ED=2MC;
(3)如圖3,若點(diǎn)D為等邊三角形ABC邊BC的中點(diǎn),點(diǎn)E,F(xiàn)分別在AB,AC邊上,且∠EDF=90°;當(dāng)BE=6,CF=0.8時(shí),直接寫出EF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生課外活動(dòng),某校積極開展社團(tuán)活動(dòng),學(xué)生可根據(jù)自己的愛好選擇一項(xiàng),已知該校開設(shè)的體育社團(tuán)有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.李老師對(duì)某年級(jí)同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖),則以下結(jié)論不正確的是( 。
A.選科目E的有5人
B.選科目D的扇形圓心角是72°
C.選科目A的人數(shù)是選擇科目B的人數(shù)的兩倍
D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數(shù)少21.6°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式.
(2)D是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合),過點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連結(jié)BD、CD設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.
①求S關(guān)于m的函數(shù)關(guān)系式及自變量m的取值范圍.
②當(dāng)m為何值時(shí),S有最大值,并求這個(gè)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com