【題目】如圖,半徑為2的半圓形紙片,按如圖方式折疊,使對(duì)折后半圓弧的中點(diǎn)M與圓心O重合,則圖中陰影部分的面積是.
【答案】
【解析】如圖,連接OM交AB于點(diǎn)C,連接OA、OB,
由題意知,OM⊥AB,且OC=MC=1,
在RT△AOC中,∵OA=2,OC=1,
∴cos∠AOC= ,AC=
∴∠AOC=60°,AB=2AC=2 ,
∴∠AOB=2∠AOC=120°,
則S弓形ABM=S扇形OAB-S△AOB
=
= ,
S陰影=S半圓-2S弓形ABM
= π×22-2( )
=2 .
故答案為:2 .
連接OM交AB于點(diǎn)C,連接OA、OB,根據(jù)題意OM⊥AB且OC=MC=1,繼而求出∠AOC=60°、求出AB的長(zhǎng),然后根據(jù)S弓形ABM=S扇形OAB-S△AOB、S陰影=S半圓-2S弓形ABM計(jì)算可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運(yùn)算,記作(a,b):如果,那么(a,b)=c.
例如:因?yàn)?3=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,27)=_______,(5,1)=_______,(2,)=_______.
(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:
設(shè)(3n,4n)=x,則(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
請(qǐng)你嘗試運(yùn)用這種方法證明下面這個(gè)等式:(3,4)+(3,5)=(3,20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,已知,BC∥OA,∠B=∠A=100°,試解答下列問(wèn)題:
(1)試說(shuō)明:OB∥AC;
(2)如圖②,若點(diǎn)E.F在BC上,且∠FOC=∠AOC,OE平分∠BOF.試求∠EOC的度數(shù);
(3)在(2)小題的條件下,若左右平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值.
(4)在(3)小題的條件下,當(dāng)∠OEB=∠OCA時(shí),試求∠OCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到A1B1C1.
(1)在圖中畫(huà)出△A1B1C1;
(2)點(diǎn)A1,B1,C1的坐標(biāo)分別為 、 、 ;
(3)若y軸有一點(diǎn)P,使△PBC與△ABC面積相等,求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如圖①擺放,點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過(guò)點(diǎn)C.
(1)求∠ADE的度數(shù);
(2)如圖②,將△DEF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)角 ,此時(shí)等腰直角三角尺記為 , 交AC于點(diǎn)M, 交BC于點(diǎn)N,試判斷 的值是否隨著 的變化而變化?如果不變,請(qǐng)求出 的值;反之,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABOC中,∠A=60°,它的一個(gè)頂點(diǎn)C在反比例函數(shù)y= 的圖象上,若將菱形向下平移2個(gè)單位,點(diǎn)A恰好落在函數(shù)圖象上,則反比例函數(shù)解析式為( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對(duì)稱(chēng)軸在y軸的右側(cè),其圖象與x軸交于點(diǎn)A(﹣1,0)與點(diǎn)C(x2 , 0),且與y軸交于點(diǎn)B(0,﹣2),小強(qiáng)得到以下結(jié)論:①0<a<2;②﹣1<b<0;③c=﹣1;④當(dāng)|a|=|b|時(shí)x2> ﹣1;以上結(jié)論中正確結(jié)論的序號(hào)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com