【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2 ①求 值;
②求圖中陰影部分的面積.
【答案】
(1)證明:連接OD
∵OA=OD,∴∠1=∠2
∵∠1=∠3,∴∠2=∠3
∴OD∥AF
∵DF⊥AF,∴OD⊥DF
∴DF是⊙O的切線
(2)證明:①解:連接BD
∵直徑AB
∴∠ADB=90°
∵圓O與BE相切
∴∠ABE=90°
∵∠DAB+∠DBA=∠DBA+∠DBE=90°
∴∠DAB=∠DBE
∴∠DAB=∠FAD
∵∠AFD=∠BDE=90°
∴△BDE∽△AFD
∴
②連接OC,交AD于G
由①,設BE=2x,則AD=3x
∵△BDE∽△ABE∴
∴
解得:x1=2, (不合題意,舍去)
∴AD=3x=6,BE=2x=4,AE=AD+DE=8
∴AB= ,∠1=30°
∴∠2=∠3=∠1=30°,∴∠COD=2∠3=60°
∴∠OGD=90°=∠AGC,∴AG=DG
∴△ACG≌△DOG,∴S△AGC=S△DGO
∴S陰影=S扇形COD=
【解析】(1)作輔助線,連接OD.根據(jù)切線的判定定理,只需證DF⊥OD即可;(2)①連接BD.根據(jù)BE、DF兩切線的性質證明△BDE∽△ABE;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以△BDE∽△AFD;最后由相似三角形的對應邊成比例求得 ;②連接OC,交AD于G.由①,設BE=2x,則AD=3x.利用①中的△BDE∽△ABE的對應邊成比例的性質求得 ,據(jù)此列出關于x的方程,解方程求得x=2,繼而可以求出AD=3x=6,BE=2x=4,AE=AD+DE=8;然后由勾股定理知AB=4 ,在直角三角形ABE中求得∠1=30°;再由三角形的角平分線的性質、等腰三角形的性質及邊角關系求得AG=DG,所以△ACG≌△DOG;最后根據(jù)兩個全等三角形的面積相等的性質求扇形的面積即可.
【考點精析】本題主要考查了勾股定理的概念和扇形面積計算公式的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點M,連接CM.
(1)求證:BE=AD;
(2)用含α的式子表示∠AMB的度數(shù);
(3)當α=90°時,取AD,BE的中點分別為點P,Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”如圖①是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成的.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖②所示的“數(shù)學風車”,若△BCD的周長是30,則這個風車的外圍周長是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”黃金周期間,某市風景區(qū)在天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù)):
日期 | 日 | 日 | 日 | 日 | 日 | 日 | 日 |
人數(shù)變化(單位:萬人) |
已知月日的游客人數(shù)為萬人,請回答下列問題:
七天內游客人數(shù)最多的是哪天,最少的是哪天?它們相差多少萬人?
求這天的游客總人數(shù)是多少萬人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證)
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請猜想1+3+5+7+9+…+19=
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)用根長度相同的火柴棒,按如圖①擺放時可擺成個正方形,按如圖②擺放時可擺成個正方形
(1)如圖①,當時,___________,如圖②,當時,________________;
(2)與之間有何數(shù)量關系,請你寫出來并說明理由;
(3)現(xiàn)有61根火柴棒,現(xiàn)用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀。請你直接寫出一種擺放方法,并通過計算驗證你的結論
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名足球守門員練習折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習過程中,守門員離開球門最遠距離是多少米?
(3)守門員全部練習結束后,他共跑了多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com