【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動(dòng)圓圓心Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長(zhǎng)度/秒的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5)以P為圓心,PA長(zhǎng)為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?
(2)當(dāng)⊙Q經(jīng)過(guò)點(diǎn)A時(shí),求⊙P被OB截得的弦長(zhǎng).

【答案】
(1)解:∵OA=6,OB=8,

∴由勾股定理可得:AB=10,

由題意知:OQ=t=AP=t,AC=2t,

∵AC是⊙P的直徑,

∴∠CDA=90°,

∴CD//OB,

∴△ACD∽△ABO,

= ,即 = ,

∴AD= t,

∵D與Q重合,

t+t=6,

解得t=


(2)解:如圖,過(guò)點(diǎn)P作PE⊥OB于點(diǎn)E,⊙P與OB相交于點(diǎn)F、G,連接PF,

當(dāng)⊙Q經(jīng)過(guò)A點(diǎn)時(shí),OQ=OA﹣QA=4,

∴t= =4s,

∴PA=4,

∴BP=AB﹣PA=6,

∵∠PEB=∠O=90°,

∴PE//OA,

∴△PEB∽△AOB,

= ,即 =

∴PE= ,

∵PF=PA=4,

∴Rt△PEF中,由勾股定理可得EF= = ,

由垂徑定理可求知:FG=2EF=

故⊙P被OB截得的弦長(zhǎng)為


【解析】(1)由題意知CD⊥OA,所以△ACD∽△ABO,利用對(duì)應(yīng)邊的比求出AD的長(zhǎng)度,若Q與D重合時(shí),則,AD+OQ=OA,列出方程即可求出t的值;(2)由于0<t≤5,當(dāng)Q經(jīng)過(guò)A點(diǎn)時(shí),OQ=4,此時(shí)用時(shí)為4s,過(guò)點(diǎn)P作PE⊥OB于點(diǎn)E,利用垂徑定理即可求出⊙P被OB截得的弦長(zhǎng).
【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)國(guó)慶節(jié)搞促銷活動(dòng),購(gòu)物不超過(guò)200元不給優(yōu)惠,超過(guò)200(不含200元)元而不足500元,所有商品按購(gòu)物價(jià)優(yōu)惠10%,超過(guò)500元的,其中500元按9折優(yōu)惠,超過(guò)的部分按8折優(yōu)惠,A,B兩個(gè)商品價(jià)格分別為180元,550元。

(1) 某人第一次購(gòu)買一件A商品,第二次購(gòu)買一件B商品,實(shí)際共付款多少元?

(2) 若此人一次購(gòu)物購(gòu)買A,B商品各一件,則實(shí)際付款多少錢?

(3) 國(guó)慶期間,某人在該商場(chǎng)兩次購(gòu)物分別付款180元和550元,如果他合起來(lái)一次性購(gòu)買同樣的商品,還可節(jié)約多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=kx2﹣6x+3,若k在數(shù)組(﹣3,﹣2,﹣1,1,2,3,4)中隨機(jī)取一個(gè),則所得拋物線的對(duì)稱軸在直線x=1的右方時(shí)的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

20

30

售價(jià)(元/件)

29

40

(1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?

(2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,航空母艦始終以40千米/時(shí)的速度由西向東航行,飛機(jī)以800千米/時(shí)的速度從艦上起飛,向西航行執(zhí)行任務(wù),如果飛機(jī)在空中最多能連續(xù)飛行4個(gè)小時(shí),那么它在起飛_____小時(shí)后就必須返航,才能安全停在艦上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過(guò)點(diǎn)B(14,0)和C(0,﹣8),對(duì)稱軸為x=4.

(1)求該拋物線的解析式;
(2)點(diǎn)D在線段AB上且AD=AC,若動(dòng)點(diǎn)P從A出發(fā)沿線段AB以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)N以某一速度從C出發(fā)沿線段CB勻速運(yùn)動(dòng),問(wèn)是否存在某一時(shí)刻,使線段PN被直線CD垂直平分?若存在,請(qǐng)求出此時(shí)的時(shí)間t(秒)和點(diǎn)N的運(yùn)動(dòng)速度;若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點(diǎn)M使△MPN為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtACB中,∠ACB=90°,A=30°,點(diǎn)DAB邊的中點(diǎn).

(1)如圖1,若CD=4,求ACB的周長(zhǎng).

(2)如圖2,若EAC的中點(diǎn),將線段CEC為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)60°,使點(diǎn)E至點(diǎn)F處,連接BFCD于點(diǎn)M,連接DF,取DF的中點(diǎn)N,連接MN,求證:MN=2CM.

(3)如圖3,以C為旋轉(zhuǎn)中心將線段CD順時(shí)針旋轉(zhuǎn)90°,使點(diǎn)D至點(diǎn)E處,連接BECDM,連接DE,取DE的中點(diǎn)N,連接交MN,試猜想BD、MN、MC之間的關(guān)系,直接寫(xiě)出其關(guān)系式,不證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)為11,點(diǎn)B對(duì)應(yīng)的數(shù)為b,點(diǎn)C在點(diǎn)B右側(cè),長(zhǎng)度為3個(gè)單位的線段BC在數(shù)軸上移動(dòng),

1)如圖1,當(dāng)線段BCO,A兩點(diǎn)之間移動(dòng)到某一位置時(shí),恰好滿足線段AC=OB,求此時(shí)b的值;

2)線段BC在數(shù)軸上沿射線AO方向移動(dòng)的過(guò)程中,是否存在ACOB=AB?若存在,求此時(shí)滿足條件的b的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知5臺(tái)A型機(jī)器一天的產(chǎn)品裝滿8箱后還剩4個(gè),7臺(tái)B型機(jī)器一天的產(chǎn)品裝滿11箱后還剩1個(gè),每臺(tái)A型機(jī)器比B型機(jī)器一天多生產(chǎn)1個(gè)產(chǎn)品.

(1)求每箱裝多少個(gè)產(chǎn)品.

(2)3臺(tái)A型機(jī)器和2臺(tái)B型機(jī)器一天能生產(chǎn)多少個(gè)產(chǎn)品?

查看答案和解析>>

同步練習(xí)冊(cè)答案