【題目】證明:如果兩個(gè)三角形有兩個(gè)角及它們的夾邊的高分別相等,那么這兩個(gè)三角形全等.
【答案】詳見解析
【解析】
先利用幾何語言寫出已知、求證,然后證明這兩個(gè)三角形中有條邊對應(yīng)相等,從而判斷這兩個(gè)三角形全等.
已知:如圖,在△ABC和△A′B′C′中,∠B=∠B′,∠C=∠C′,AD、A′D′分別是BC,B′C′邊上的高,AD=A′D′.
求證:△ABC≌△A′B′C′.
證明:∵AD⊥BC,A′D′⊥B′C′,
∴∠ADB=∠A′D′B′=90°.
∵∠B=∠B′,AD=A′D′,
∴△ABD≌△A′B′D′(AAS),
∴AB=A′B′,
∵∠B=∠B′,∠C=∠C′
∴△ABC≌△A′B′C′(AAS),
即如果兩個(gè)三角形有兩個(gè)角及它們的夾邊的高分別相等,那么這兩個(gè)三角形全等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,都是由邊長為1的正方體疊成的立體圖形,例如第(1)個(gè)圖形由1個(gè)正方體疊成,第(2)個(gè)圖形由4個(gè)正方體疊成,第(3)個(gè)圖形由10個(gè)正方體疊成,依次規(guī)律,第(8)個(gè)圖形有多少個(gè)正方體疊成( 。
A.120個(gè)B.121個(gè)C.122個(gè)D.123個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(-1,y1),(2,y2),(3,y3)在反比例函數(shù)的圖象上.下列結(jié)論中正確的是( )
A. y1>y2>y3 B. y1>y3>y2 C. y3>y1>y2 D. y2>y3>y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組乘一輛檢修車沿鐵路檢修,規(guī)定向東走為正,向西走為負(fù),該小組的出發(fā)地記為A,某天檢修完畢時(shí),行走記錄(單位.千米)如下.
+10,-2,+3,-1,+5,-3,-2,+11,+3,-4,+6.
(1)問收工時(shí),檢修小組距出發(fā)地有多遠(yuǎn)?在東側(cè)還是西側(cè)?
(2)距離A最近的一次是哪一次?距離多遠(yuǎn)?
(3)若檢修車每千米耗油2.8升,求從出發(fā)到收工共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CB⊥DB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=:3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, ABC中,AB=AC,AD⊥BC于點(diǎn)D,延長AB至點(diǎn)E,使∠AEC=∠DAB.判斷CE與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),試分別根據(jù)下列條件,求出點(diǎn)的坐標(biāo).
(1)點(diǎn)在軸上;
(2)點(diǎn)的縱坐標(biāo)比橫坐標(biāo)大3;
(3)點(diǎn)到軸的距離為2,且在第四象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓中的弦AB與弦CD垂直于點(diǎn)E,點(diǎn)F在上, ,直線MN過點(diǎn)D,且∠MDC=∠DFC,求證:直線MN是該圓的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com