【題目】如圖,在四邊形ABCD中,∠ABC=90°,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.
【答案】
【解析】
過(guò)點(diǎn)A作AE⊥BD,由AAS得△AOE≌△COD,從而得CD=AE=3,由勾股定理得DB=4,易證△ABE∽△BCD,得,進(jìn)而即可求解.
過(guò)點(diǎn)A作AE⊥BD,
∵CD⊥BD,AE⊥BD,
∴∠CDB=∠AED=90°,CO=AO,∠COD=∠AOE,
∴△AOE≌△COD(AAS)
∴CD=AE=3,
∵∠CDB=90°,BC=5,CD=3,
∴DB==4,
∵∠ABC=∠AEB=90°,
∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,
∴∠EAB=∠CBD,
又∵∠CDB=∠AEB=90°,
∴△ABE∽△BCD,
∴,
∴,
∴AB=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落在點(diǎn)G處,折痕為EF.
(1)如圖1,求證:BE=GF;
(2)如圖2,連接CF、DG,若CE=2BE,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖2中的四個(gè)三角形,使寫(xiě)出的每個(gè)三角形都為等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法正確的有( 。
①正八邊形的每個(gè)內(nèi)角都是135°;
②反比例函數(shù)y=﹣,當(dāng)x<0時(shí),y隨x的增大而增大;
③長(zhǎng)度等于半徑的弦所對(duì)的圓周角為30°;
④分式方程的解為;
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=10,以AB為直徑作半圓O,半徑OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到OC,點(diǎn)A的對(duì)應(yīng)點(diǎn)為C,當(dāng)點(diǎn)C與點(diǎn)B重合時(shí)停止.連接BC并延長(zhǎng)到點(diǎn)D,使得CD=BC,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,連接AD,AC.
(1)AD= ;
(2)如圖1,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),判斷△ABD的形狀,并說(shuō)明理由;
(3)如圖2,當(dāng)OE=1時(shí),求BC的長(zhǎng);
(4)如圖3,若點(diǎn)P是線(xiàn)段AD上一點(diǎn),連接PC,當(dāng)PC與半圓O相切時(shí),直接寫(xiě)出直線(xiàn)PC與AD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,AD=1,AB=3,∠DAB=60°,點(diǎn)E為邊CD上一動(dòng)點(diǎn),過(guò)點(diǎn)C作AE的垂線(xiàn)交AE的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求∠D的度數(shù);
(2)若點(diǎn)E為CD的中點(diǎn),求EF的值;
(3)當(dāng)點(diǎn)E在線(xiàn)段CD上運(yùn)動(dòng)時(shí),是否存在最大值?若存在,求出該最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:如果α,β都為銳角,且tanα=,tanβ=,求α+β的度數(shù).
解決:如圖①,把α,β放在正方形網(wǎng)格中,使得∠ABD=α,∠CBE=β,連結(jié)AC,易證△ABC是等腰直角三角形,因此可求得α+β=∠ABC= .
拓展:參考以上方法,解決下列問(wèn)題:如果α,β都為銳角,當(dāng)tanα=4,tanβ=時(shí),
(1)在圖②的正方形網(wǎng)格中,利用已作出的銳角α,畫(huà)出∠MON=α﹣β;
(2)求出α﹣β= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司開(kāi)發(fā)一種新的節(jié)能產(chǎn)品,工作人員對(duì)銷(xiāo)售情況進(jìn)行了調(diào)查,圖中折線(xiàn)表示月銷(xiāo)售量(件)與銷(xiāo)售時(shí)間(天)之間的函數(shù)關(guān)系,已知線(xiàn)段表示函數(shù)關(guān)系中,時(shí)間每增加天,月銷(xiāo)售量減少件,求與間的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=x2﹣4x+3圖象與x軸分別交于點(diǎn)B、D,與y軸交于點(diǎn)C,頂點(diǎn)為A,分別連接AB,BC,CD,DA.
(1)求四邊形ABCD的面積;
(2)當(dāng)y>0時(shí),自變量x的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com