【題目】如圖,的直徑為,點(diǎn)在上,點(diǎn),分別在,的延長(zhǎng)線上,,垂足為,.
(1)求證:是的切線;
(2)若,,求的長(zhǎng).
【答案】(1)見解析;(2)
【解析】
(1)連接OC,根據(jù)三角形的內(nèi)角和得到∠EDC+∠ECD=90°,根據(jù)等腰三角形的性質(zhì)得到∠A=∠ACO,得到∠OCD=90°,于是得到結(jié)論;
(2)根據(jù)已知條件得到OC=OB=AB=2,根據(jù)勾股定理即可得到結(jié)論.
(1)證明:連接OC,
∵DE⊥AE,
∴∠E=90°,
∴∠EDC+∠ECD=90°,
∵∠A=∠CDE,
∴∠A+∠DCE=90°,
∵OC=OA,
∴∠A=∠ACO,
∴∠ACO+∠DCE=90°,
∴∠OCD=90°,
∴OC⊥CD,
∴CD是⊙O的切線;
(2)解:∵AB=4,BD=3,
∴OC=OB=AB=2,
∴OD=2+3=5,
∴CD===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,無人機(jī)航拍測(cè)量的應(yīng)用越來越廣泛.如圖,無人機(jī)從A處觀測(cè)得某建筑物頂點(diǎn)O時(shí)俯角為30°,繼續(xù)水平前行10米到達(dá)B處,測(cè)得俯角為45°,已知無人機(jī)的水平飛行高度為45米,則這棟樓的高度是多少米?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)試判斷原方程根的情況;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點(diǎn),則A,B兩點(diǎn)間的距離是否存在最大或最小值?若存在,求出這個(gè)值;若不存在,請(qǐng)說明理由.
(友情提示:AB=|x2﹣x1|)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是拋物線上的任意一點(diǎn),設(shè)點(diǎn)P到直線y=﹣1的距離為d1,點(diǎn)P到點(diǎn)F(0,3)的距離為d2
(1)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)判斷d1,d2的大小關(guān)系并證明;
(3)若線段PF的延長(zhǎng)線交拋物線于點(diǎn)Q,且線段PQ的長(zhǎng)度是m,線段PQ的中點(diǎn)M到x軸的距離是n.直接寫出m與n關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù) (x<0)的圖象交于點(diǎn)B(﹣2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠接的600件玩具的訂單后,決定由甲、乙兩車間共同完成生產(chǎn)任務(wù),已知甲車間工作效率是乙車間的2倍,乙車間單獨(dú)完成此項(xiàng)生產(chǎn)任務(wù)比甲車間單獨(dú)完成多用10天.
(1)求甲,乙兩車間平均每天各能制作多少件玩具;
(2)兩車間同時(shí)開工3天后,臨時(shí)又增加了90件的玩具生產(chǎn)任務(wù),為了使完成任務(wù)的總時(shí)間不超過7天,兩車間從第4天起各自提高工作效率,提高工作效率后甲車間工作效率仍是乙車間工作率的2倍,求乙車間提高效率后每天至少生產(chǎn)多少件玩具.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積和周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義: 對(duì)于平面直角坐標(biāo)系xOy上的點(diǎn)P(a, b) 和拋物線, 我們稱P(a, b)是拋物線的相伴點(diǎn), 拋物線是點(diǎn)P(a, b) 的相伴拋物線.
如圖,已知點(diǎn)A(-2, -2),B(4, -2),C(1, 4).
(1) 點(diǎn)A的相伴拋物線的解析式為 ;過A, B兩點(diǎn)的拋物線的相伴點(diǎn)坐標(biāo)為 ;
(2) 設(shè)點(diǎn)P(a, b) 在直線AC上運(yùn)動(dòng):
①點(diǎn)P(a, b)的相伴拋物線的頂點(diǎn)都在同一條拋物線Ω上, 求拋物線Ω的解析式.
②當(dāng)點(diǎn)P(a, b)的相伴拋物線的頂點(diǎn)落在△ABC 內(nèi)部時(shí), 請(qǐng)直接寫出 a 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com