【題目】如圖,以點(diǎn)為圓心,半徑為2的圓與的圖象交于點(diǎn),若,則的值為________

【答案】1

【解析】

分別過AAMy軸于點(diǎn)M,過點(diǎn)BBNx軸于點(diǎn)N,利用對稱性,可得∠AOM=BON=15°.再作點(diǎn)B關(guān)于x軸的對稱點(diǎn)C,連接BC,OC,作BDOC于點(diǎn)D,根據(jù)SOBN=SOBC得出△OBN的面積,從而可求出k的值.

解:分別過AAMy軸于點(diǎn)M,過點(diǎn)BBNx軸于點(diǎn)N,

由圓、反比例函數(shù)圖象的對稱性可知,圖形關(guān)于一、三象限角平分線對稱,即關(guān)于直線y=x對稱,可得△AOM≌△BON
∴∠AOM=BON=×(90°-60°)=15°.

作點(diǎn)B關(guān)于x軸的對稱點(diǎn)C,連接BC,OC,作BDOC于點(diǎn)D,

則∠BOC=2BON=30°,OB=OC=2,

BD=OB=1,

SOBN=SOBC=×OC×BD=1,

k=SOBN=1

故答案為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,分別在四條邊上.,,,

1)寫出圖中的相似三角形,并證明.

2)當(dāng),時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機(jī)抽取40名學(xué)生進(jìn)行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行了整理、描述和分析.下面給出了部分信息.

a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計表如下:

成績x

學(xué)校

4

11

13

10

2

6

3

15

14

2

(說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)

b.甲校成績在這一組的是:

70 70 70 71 72 73 73 73 74 75 76 77 78

c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:

學(xué)校

平均分

中位數(shù)

眾數(shù)

74.2

n

85

73.5

76

84

根據(jù)以上信息,回答下列問題:

1)寫出表中n的值;

2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是_____________校的學(xué)生(填),理由是__________;

3)假設(shè)乙校800名學(xué)生都參加此次測試,估計成績優(yōu)秀的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的周長為22m,對角線ACBD交于點(diǎn)O,過點(diǎn)OAC垂直的直線交邊AD于點(diǎn)E,則△CDE的周長為( 。

A. 8cmB. 9cmC. 10cmD. 11cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=∠ADC,對角線ACBD交于點(diǎn)O,AOBO,DE平分∠ADCBC于點(diǎn)E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB2,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線與直線交于兩點(diǎn),且兩點(diǎn)之間的拋物線上總有兩個縱坐標(biāo)相等的點(diǎn).

1)求證:;

2)過軸的垂線,交直線,,且當(dāng),三點(diǎn)共線時,軸.

①求的值:

②對于每個給定的實數(shù),以為直徑的圓與直線總有公共點(diǎn),求的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家具商場計劃購進(jìn)某種餐桌、餐椅進(jìn)行銷售,有關(guān)信息如表:

原進(jìn)價(元/張)

零售價(元/張)

成套售價(元/套)

餐桌

a

270

500

餐椅

a110

70

已知用600元購進(jìn)的餐桌數(shù)量與用160元購進(jìn)的餐椅數(shù)量相同.

1)求表中a的值;

2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進(jìn)貨,才能獲得最大利潤?最大利潤是多少?

3)由于原材料價格上漲,每張餐桌和餐椅的進(jìn)價都上漲了10元,但銷售價格保持不變.商場購進(jìn)了餐桌和餐椅共200張,應(yīng)怎樣安排成套銷售的銷售量(至少10套以上),使得實際全部售出后,最大利潤與(2)中相同?請求出進(jìn)貨方案和銷售方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AMBN,CBN上一點(diǎn), BD平分∠ABN且過AC的中點(diǎn)O,交AM于點(diǎn)D,DEBD,交BN于點(diǎn)E

1)求證:ADO≌△CBO

2)求證:四邊形ABCD是菱形.

3)若DE = AB = 2,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD>AB,連接AC,將線段AC繞點(diǎn)A順時針旋轉(zhuǎn)90得到線段AE,平移線段AE得到線段DF(點(diǎn)A與點(diǎn)D對應(yīng),點(diǎn)E與點(diǎn)F對應(yīng)),連接BF,分別交直線AD,AC于點(diǎn)G,M,連接EF

(1) 依題意補(bǔ)全圖形;

(2) 求證:EGAD;

(3) 連接EC,交BF于點(diǎn)N,若AB=2,BC=4,設(shè)MB=a,NF=b,試比較之間的大小關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案