【題目】如圖,△ABC內(nèi)接于⊙O,AC為⊙O的直徑,PB是⊙O的切線,B為切點,OP⊥BC,垂足為E,交⊙O于D,連接BD.
(1)求證:BD平分∠PBC;
(2)若⊙O的半徑為1,PD=3DE,求OE及AB的長.
【答案】(1)詳見解析;(2).
【解析】
試題(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可得∠PBD=∠EBD,所以∠PBD=∠EBD;(2)利用面積法首先證明==,再證明△BEO∽△PEB,得=,即==,由此即可解決問題.
試題解析:(1)證明:連接OB.
∵PB是⊙O切線,
∴OB⊥PB,
∴∠PBO=90°,
∴∠PBD+∠OBD=90°,
∵OB=OD,
∴∠OBD=∠ODB,
∵OP⊥BC,
∴∠BED=90°,
∴∠DBE+∠BDE=90°,
∴∠PBD=∠EBD,
∴BD平分∠PBC.
(2)解:作DK⊥PB于K,
∵==,
∵BD平分∠PBE,DE⊥BE,DK⊥PB,
∴DK=DE,
∴==,
∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,
∴∠OBE=∠P,∵∠OEB=∠BEP=90°,
∴△BEO∽△PEB,
∴=,
∴==,
∵BO=1,
∴OE=,
∵OE⊥BC,
∴BE=EC,∵AO=OC,
∴AB=2OE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了檢測自己實心球的訓(xùn)練情況,再一次投擲的測試中,實心球經(jīng)過的拋物線如圖所示,其中出手點A的坐標為(0,),球在最高點B的坐標為(3,).
(1)求拋物線的解析式;
(2)已知某市男子實心球的得分標準如表:
得分 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
擲遠(米) | 8.6 | 8.3 | 8 | 7.7 | 7.3 | 6.9 | 6.5 | 6.1 | 5.8 | 5.5 | 5.2 | 4.8> | 4.4 | 4.0 | 3.5 | 3.0 |
假設(shè)小明是春谷中學(xué)九年級的男生,求小明在實心球訓(xùn)練中的得分;
(3)在小明練習(xí)實心球的正前方距離投擲點7米處有一個身高1.2米的小朋友在玩耍,問該小朋友是否有危險(如果實心球在小孩頭頂上方飛出為安全,否則視為危險),請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于D,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點,弦PQ交CD于E,則PEEQ的值是( )
A. 24 B. 9 C. 36 D. 27
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABOC是正方形,點A的坐標為(1,1),是以點B為圓心,BA為半徑的圓;是以點O為圓心,OA1為半徑的圓弧,是以點C為圓心,CA2為半徑的圓弧,是以點A為圓心,AA3為半徑的圓弧,繼續(xù)以點B,O,C,A為圓心按上述作法得到的曲線AA1A2A3A4A5…稱為正方形的“漸開線”,則點A2 018的坐標是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2+ax+b與x軸兩個交點間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線x=1,將此拋物線向右平移1個單位,再向下平移2個單位,得到的拋物線過點( 。
A. (3,6) B. (3,﹣2) C. (3,1) D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中不正確的是( )
A. c<0
B. y的最小值為負值
C. 當x>1時,y隨x的增大而減小
D. x=3是關(guān)于x的方程ax2+bx+c=0的一個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某景區(qū)五個景點A,B,C,D,E的平面示意圖,B,A在C的正東方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中點處.
(1)求景點B,E之間的距離;
(2)求景點B,A之間的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.
(1)求點C的坐標;
(2)當∠BCP=15°時,求t的值;
(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com