【題目】某水果公司以22元/千克的成本價購進1000kg蘋果,公司想知道蘋果的損壞率,隨機抽取若干進行統(tǒng)計,部分結果如下表:

草果總質量nkg

100

200

300

400

500

1000

損壞蘋果質量mkg

10.60

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結果保留小數(shù)點后三位)

0.106

0.097

0.102

0.098

0.099

0.101

根據(jù)此表估計這批蘋果損壞的概率(精確到0.1),從而計算該公司希望這批蘋果能獲得利潤23000元,則銷售時(去掉損壞的蘋果)售價應至少定為_____/千克.

【答案】50

【解析】

根據(jù)利用頻率估計概率得到隨實驗次數(shù)的增多,發(fā)芽的頻率越來越穩(wěn)定在0.1左右,由此可估計蘋果的損壞概率為0.1;根據(jù)概率計算出在1000kg蘋果中完好蘋果的質量為:1000×0.9=900(kg),設每千克蘋果的銷售價為x元,然后根據(jù)“售價=進價+利潤”列方程解答.

解:根據(jù)表中的損壞的頻率,當實驗次數(shù)增多時,蘋果損壞的頻率越來越穩(wěn)定在0.1左右,

所以蘋果的損壞概率為0.1

根據(jù)估計的概率可以知道,在1000kg蘋果中完好蘋果的質量為:1000×0.9900(kg)

設每千克蘋果的銷售價為x元,則應有900x22×1000+23000,

解得x50

答:出售蘋果時每千克大約定價為50元可獲利潤23000元.

故答案為:50

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,BABC,BD平分∠ABC

1)求證:四邊形ABCD是菱形;

2)過點DDEBD,交BC的延長線于點E,若BC5,BD8,求四邊形ABED的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,

1)作的平分線交邊于點,再以點為圓心,長為半徑作;(要求:不寫作法,保留作圖痕跡)

2)判斷(1)中的位置關系并說明理由.

3)若,求出(1)中的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,的頂點是反比例函數(shù)圖象上一點,過點交反比例函數(shù)的圖象于點,過點于點

1)求點的坐標;

2)將沿翻折得到,過點軸交于點,連接,判斷四邊形的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級(1)班要從甲乙兩名同學中選派一人去參加學校舉行的”掃黑除惡”知識競賽,王老師準備用一副撲克牌中排列數(shù)字分別為,,的四張撲克牌做抽數(shù)字游戲,決定誰去參加比賽,游戲規(guī)則為;將這四張牌的正面全部朝下,洗勻后從中隨機抽取一張,得到的數(shù)字作為十位上的數(shù)字,然后將所抽到的牌放回,再從中隨機抽取一張,得到的數(shù)字作為個位上的數(shù)字,這樣就得到了一個兩位數(shù),若這個兩位數(shù)小于,則甲勝,否則乙獲勝,且游戲的獲勝者將去參加比賽.

1)求抽取的撲克牌使得十位數(shù)字是的概率;

2)你認為這個游戲公平嗎?請運用概率知識說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Rt△ABC中,BC=9CA=12,∠ABC的平分線BDAC與點D, DE⊥DBAB于點E

1)設⊙O△BDE的外接圓,求證:AC⊙O的切線;

2)設⊙OBC于點F,連結EF,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)域平面示意圖如圖,點O在河的一側,AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數(shù)據(jù):sin73.7°≈,cos73.7°≈,tan73.7°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABO的直徑,G為弦AE的中點,OG的延長線交O于點D,連接BDAE于點F,延長AE至點C,使得FCBC,連接BC

1)求證:BCO的切線;

2O的半徑為10,tanA,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長為4,以BC為直徑的半圓OAB于點D,交AC于點E,則圖中陰影部分的面積是(  )

A.2B.2

C.4+D.4

查看答案和解析>>

同步練習冊答案