【題目】下列條件中,不能判定一個四邊形是平行四邊形的是( 。
A. 兩組對邊分別平行B. 一組對邊平行且相等C. 兩組對角分別相等 D. 一組對邊相等且一組對角相等
【答案】D
【解析】
根據(jù)平行四邊形的判定方法逐一進行判斷即可.
A. 兩組對邊分別平行的四邊形是平行四邊形,故A選項正確,不符合題意;
B. 一組對邊平行且相等的四邊形是平行四邊形,故B選項正確,不符合題意;
C. 兩組對角分別相等的四邊形是平行四邊形,故C選項正確,不符合題意;
D. 一組對邊相等且一組對角相等的四邊形不一定是平行四邊形,
如圖,四邊形ABCD為平行四邊形,連接AC,作AE垂直BC于E,
在EB上截取EC'=EC,連接AC',則△AEC'≌△AEC,AC'=AC,
把△ACD繞點A順時針旋轉∠CAC'的度數(shù),則AC與AC'重合,
顯然四邊形ABC'D'滿足:AB=CD=C'D',∠B=∠D=∠D',而四邊形ABC'D'并不是平行四邊形,故D選項錯誤,符合題意,
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】在有些情況下,不需要計算出結果也能把絕對值符號去掉。例如:|6+7|= 6+7 ;|6—7|=7- 6;|7-6|=7- 6 ;|―6―7|=6+7;根據(jù)上面的規(guī)律,把下列各式寫成去掉絕對值符號的形式:
(1)|7-21|=______;
(2)||=_______;
(3)||=________;
(4)用合理的方法計算:||+||-||.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點B在y軸上,若反比例函數(shù)y=(k≠0)的圖象過點C,則該反比例函數(shù)的表達式為_______.
【答案】
【解析】解:如圖,過點C作CE⊥y軸于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵點A的坐標為(﹣4,0),∴OA=4,∵AB=5,∴OB= =3,在△ABO和△BCE中,∵∠OAB=∠CBE,∠AOB=∠BEC,AB=BC,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴點C的坐標為(3,1),∵反比例函數(shù)(k≠0)的圖象過點C,∴k=xy=3×1=3,∴反比例函數(shù)的表達式為.故答案為: .
點睛:本題考查的是反比例函數(shù)圖象上點的坐標特點,涉及到正方形的性質,全等三角形的判定與性質,反比例函數(shù)圖象上的點的坐標特征,作輔助線構造出全等三角形并求出點D的坐標是解題的關鍵.
【題型】填空題
【結束】
17
【題目】關于x的分式方程=1的解是正數(shù),則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電商時代使得網(wǎng)購更加便捷和普及.小張響應國家號召,自主創(chuàng)業(yè),開了家淘寶店.他購進一種成本為100元/件的新商品,在試銷中發(fā)現(xiàn):銷售單價x(元)與每天銷售量y(件)之間滿足如圖所示的關系.
(1)求y與x之間的函數(shù)關系式;
(2)若某天小張銷售該產(chǎn)品獲得的利潤為1200元,求銷售單價x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)5﹣(﹣2)+(﹣3)﹣(+4)
(2)(﹣﹣+)×(﹣24)
(3)(﹣3)÷××(﹣15)
(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上.
(1)如圖1,當EP⊥BC時,求CN的長;
(2) 如圖2,當EP⊥AC時,求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當CP的長最大時MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過點A(﹣1,)及原點,交x軸于另一點C(2,0),點D(0,m)是y軸正半軸上一動點,直線AD交拋物線于另一點B.
(1)求拋物線的解析式;
(2)如圖1,連接AO、BO,若△OAB的面積為5,求m的值;
(3)如圖2,作BE⊥x軸于E,連接AC、DE,當D點運動變化時,AC、DE的位置關系是否變化?請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE∥BA交AC于點E,DF∥CA交AB于點F,已知CD=3.
(1)求AD的長;
(2)求四邊形AEDF的周長.(注意:本題中的計算過程和結果均保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空,完成下列說理過程
如圖,點A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
解:(1)如圖,因為OD是∠AOC的平分線,
所以∠COD=∠AOC.
因為OE是∠BOC的平分線,
所以∠COE= .
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知
∠BOE=∠COE= ﹣∠COD= °.
所以∠AOE= ﹣∠BOE= °.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com