【題目】計算與化簡.
.
【答案】; ; ; ;;.
【解析】
(1)去括號,看作是省略加號的加法;
(2)先計算平方,再乘除,最后算加減;
(3)根據乘法分配律進行計算;
(4)先計算平方,再乘除,最后算加減;
(5)將帶分數化為100﹣的形式,再根據乘法分配律進行計算;
(6)先計算平方,再乘除,最后算加減.
(1)原式=﹣20﹣14+18﹣13=﹣20﹣14﹣13+18=﹣47+18=﹣29;
(2)原式=10+(﹣2)×25=10﹣50=﹣40;
(3)原式=×36+×36﹣×36=24+20﹣21=44﹣21=23;
(4)原式=﹣1﹣6×+15=﹣1﹣+15=14﹣=13;
(5)原式=(100﹣)×(﹣9)=100×(﹣9)+×9=﹣900+=﹣900+5.5=﹣894.5;
(6)原式=100÷4+27×﹣8=25+3﹣8=20.
科目:初中數學 來源: 題型:
【題目】已知在紙面上有一數軸(如圖),折疊紙面.
(1)若表示﹣1的點與表示3的點重合,回答以下問題:
①表示5的點與表示數_________的點重合;
②若數軸上A、B兩點之間的距離為9(A在B的左側),且A、B兩點經折疊后重合,求A、B兩點表示的數是多少?
(2)若點D表示的數為x,則當x為_______時,|x+1|與|x﹣2|的值相等.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】福鼎市南溪水庫的警戒水位是,以下是南溪水庫管理處七月份某周監(jiān)測到的水位變化情況,上周末恰好達到警戒水位(正數表示比前一天水位高,負數表示比前一天水位低).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位變化 |
星期四的水位是多少?
從這周一到周日哪天的水位是最高的?
以警戒水位為零點,用折線圖表表示本周水位情況.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條不完整的數軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示. 設點A,B,C所對應數的和是p.
(1)若以B為原點,則點A,C所對應的數為 、 ,p的值為 ;若以C為原點,p 的值為 ;
(2)若原點O在圖中數軸上點C的右邊,且CO=28,求p的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,AE與BF相交于點O,連接EF
(1)求證:四邊形ABEF是菱形;
(2)若AE=6,BF=8,CE=,求□ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點M從點D出發(fā),以每秒2個單位長度的速度向點A運動,同時,點N從點B出發(fā),以每秒1個單位長度的速度向點C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP⊥AD于點P,連接AC交NP于點Q,連接MQ.設運動時間為t秒.
(1)AM= ,AP= .(用含t的代數式表示)
(2)當四邊形ANCP為平行四邊形時,求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由
②使四邊形AQMK為正方形,則AC= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一般情況下不成立,但有些數可以使得它成立,例如:m=n=0時,我們稱使得成立的一對數m,n為“相伴數對”,記為(m,n).
(1)若(m,1)是“相伴數對”,則m=_____;
(2)(m,n)是“相伴數對”,則代數式m﹣[n+(6﹣12n﹣15m)]的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC長為( )
A. 10 B. 8 C. 14 D. 12
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)【證法回顧】證明:三角形中位線定理.
已知:如圖1,DE是△ABC的中位線.
求證: .
證明:添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是AB、AC的中點)到點F,使得EF=DE,連接CF;
請繼續(xù)完成證明過程:
(2)【問題解決】
如圖2,在正方形ABCD中,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=2,DF=3,∠GEF=90°,求GF的長.
(3)【拓展研究】
如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點,G、F分別為AB、CD邊上的點,若AG=,DF=2,∠GEF=90°,求GF的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com