【題目】計算:
(1)(x﹣y)2﹣(x﹣2y)(x+y)
(2)
÷(2x﹣

【答案】
(1)

解:(x﹣y)2﹣(x﹣2y)(x+y)

=x2﹣2xy+y2﹣x2+xy+2y2

=﹣xy+3y2


(2)

解: ÷(2x﹣

= ×

=


【解析】(1)根據(jù)平方差公式、多項式乘多項式法則進行計算;(2)根據(jù)分式混合運算法則進行計算.本題考查的是整式的混合運算、分式的混合運算,掌握平方差公式、多項式乘多項式法則、分式的混合運算法則是解題的關(guān)鍵.
【考點精析】關(guān)于本題考查的分式的混合運算,需要了解運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]}才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,正方形ABCD的對角線長為6,OA=4.若將⊙O繞點A按順時針方向旋轉(zhuǎn)360°,在旋轉(zhuǎn)過程中,⊙O與正方形ABCD的邊只有一個公共點的情況一共出現(xiàn)(
A.3次
B.4次
C.5次
D.6次

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結(jié)論:
①當(dāng)x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正確的結(jié)論是( 。

A.①③④
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CD是AB邊上的中線,F(xiàn)是CD的中點,過點C作AB的平行線交BF的延長線于點E,連接AE.

(1)求證:EC=DA;
(2)若AC⊥CB,試判斷四邊形AECD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的分式方程 ﹣3= 有負分數(shù)解,且關(guān)于x的不等式組 的解集為x<﹣2,那么符合條件的所有整數(shù)a的積是( 。
A.﹣3
B.0
C.3
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點,點A的坐標(biāo)為(0,1),點B在第一象限內(nèi),點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點,過點B作軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;
(2)點P是線段AB上一點,點D是線段BC上一點,PD∥x軸,射線PD與拋物線交于點G,過點P作PE⊥x軸于點E,PF⊥BC于點F.當(dāng)PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+ BH的值最小,求點H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點A,點C的對應(yīng)點分別為點A′,點C′;當(dāng)△A′C′K′是直角三角形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標(biāo)為(m,﹣2).

(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,點M,N在同一個正比例函數(shù)圖象上的是( 。
A.M(2,﹣3),N(﹣4,6)
B.M(﹣2,3),N(4,6)
C.M(﹣2,﹣3),N(4,﹣6)
D.M(2,3),N(﹣4,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩組數(shù)據(jù)m,6,n與1,m,2n,7的平均數(shù)都是6,若將這兩組數(shù)據(jù)合并成一組數(shù)據(jù),則這組新數(shù)據(jù)的中位數(shù)為

查看答案和解析>>

同步練習(xí)冊答案