【題目】數(shù)軸上有A、B兩點,A在B的左側(cè),已知點B對應(yīng)的數(shù)為2,點A對應(yīng)的數(shù)為a.

(1)若a=﹣3,則線段AB的長為 (直接寫出結(jié)果);

(2)若點C在線段AB之間,且AC﹣BC=2,求點C表示的數(shù)(用含a的式子表示);

(3)在(2)的條件下,點D是數(shù)軸上A點左側(cè)一點,當AC=2AD,BD=4BC,求a的值.

【答案】(1)5;(2)2+;(3) a=﹣4.

【解析】

試題分析:(1)根據(jù)兩點間的距離求解;

(2)設(shè)C點對應(yīng)的數(shù)為x,則AC=x﹣a,BC=2﹣x,根據(jù)AC﹣BC=2列出關(guān)于x的方程并求解;

(3)根據(jù)題意得到AC=x﹣a=2+﹣a,AD=AC=1﹣,結(jié)合(2)的已知條件AC﹣BC=2和圖示中的BD=AB+AD列出關(guān)于a的方程﹣2a=2﹣a+1﹣,并解方程.

解:(1)若a=﹣3時,則點A對應(yīng)的數(shù)是﹣3,所以AB=2﹣(﹣3)=5,即線段AB的長度為5;

故答案是:5;

(2)設(shè)C點對應(yīng)的數(shù)為x,則AC=x﹣a,BC=2﹣x,

AC﹣BC=2,即(x﹣a)﹣(2﹣x)=2,

解得x=2+,即點C表示的數(shù)為2+

(3)依題意AC=x﹣a=2+﹣a=2﹣

AD=AC=(2﹣)=1﹣,

AB=2﹣a,

又BD=AB+AD,即﹣2a=2﹣a+1﹣,

解得 a=﹣4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點D、E、F,且∠ACB=90°,AB=5,BC=3,點P在射線AC上運動,過點P作PH⊥AB,垂足為H.

(1)直接寫出線段AC、AD及⊙O半徑的長;
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當PH與⊙O相切時,求相應(yīng)的y值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,點C在O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

(1)求證:PC是O的切線;
(2)求證:BC= AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點O(0,0),A(3,0),點B在y軸正半軸上,且OAB的面積為6,求點B的坐標及直線AB對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的函數(shù)表達式為y=﹣2x+2,且與x軸交于點A,直線l2經(jīng)過點B(5,0)且與l1交于點C,已知點C的橫坐標是2.

(1)求點A和點C的坐標;

(2)若在直線l2上存在異于點C的另一點M,使得ABM與ABC的面積相等,試求點M的坐標.

(3)在y軸上求點P的坐標,使得PA+PC最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角板的直角頂點C疊放在一起.

(1)若DCB=35°,求ACB的度數(shù);

(2)若ACB=140°,求DCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中AD∥BC,對角線AC、BD相交于點O,若AO:CO=2:3,AD=4,則BC等于(  )
A.12
B.8
C.7
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定,在平面直角坐標系中,將一個圖形先關(guān)于y軸對稱,再向下平移2個單位記為1次“R變換”.

(1)畫出ABC經(jīng)過1次“R變換”后的圖形△A1B1C1;

(2)若ABC經(jīng)過3次“R變換”后的圖形為△A3B3C3,則頂點A3坐標為   

(3)記點P(a,b)經(jīng)過n次“R變換”后的點為Pn,直接寫出Pn的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是(
A.等邊三角形
B.平行四邊形
C.正六邊形
D.五角星

查看答案和解析>>

同步練習(xí)冊答案