【題目】數(shù)軸上有A、B兩點,A在B的左側(cè),已知點B對應(yīng)的數(shù)為2,點A對應(yīng)的數(shù)為a.
(1)若a=﹣3,則線段AB的長為 (直接寫出結(jié)果);
(2)若點C在線段AB之間,且AC﹣BC=2,求點C表示的數(shù)(用含a的式子表示);
(3)在(2)的條件下,點D是數(shù)軸上A點左側(cè)一點,當AC=2AD,BD=4BC,求a的值.
【答案】(1)5;(2)2+;(3) a=﹣4.
【解析】
試題分析:(1)根據(jù)兩點間的距離求解;
(2)設(shè)C點對應(yīng)的數(shù)為x,則AC=x﹣a,BC=2﹣x,根據(jù)AC﹣BC=2列出關(guān)于x的方程并求解;
(3)根據(jù)題意得到AC=x﹣a=2+﹣a,AD=AC=1﹣,結(jié)合(2)的已知條件AC﹣BC=2和圖示中的BD=AB+AD列出關(guān)于a的方程﹣2a=2﹣a+1﹣,并解方程.
解:(1)若a=﹣3時,則點A對應(yīng)的數(shù)是﹣3,所以AB=2﹣(﹣3)=5,即線段AB的長度為5;
故答案是:5;
(2)設(shè)C點對應(yīng)的數(shù)為x,則AC=x﹣a,BC=2﹣x,
∵AC﹣BC=2,即(x﹣a)﹣(2﹣x)=2,
解得x=2+,即點C表示的數(shù)為2+;
(3)依題意AC=x﹣a=2+﹣a=2﹣,
AD=AC=(2﹣)=1﹣,
∵AB=2﹣a,
又BD=AB+AD,即﹣2a=2﹣a+1﹣,
解得 a=﹣4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點D、E、F,且∠ACB=90°,AB=5,BC=3,點P在射線AC上運動,過點P作PH⊥AB,垂足為H.
(1)直接寫出線段AC、AD及⊙O半徑的長;
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當PH與⊙O相切時,求相應(yīng)的y值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是O的直徑,點C在O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是O的切線;
(2)求證:BC= AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點O(0,0),A(3,0),點B在y軸正半軸上,且△OAB的面積為6,求點B的坐標及直線AB對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)表達式為y=﹣2x+2,且與x軸交于點A,直線l2經(jīng)過點B(5,0)且與l1交于點C,已知點C的橫坐標是2.
(1)求點A和點C的坐標;
(2)若在直線l2上存在異于點C的另一點M,使得△ABM與△ABC的面積相等,試求點M的坐標.
(3)在y軸上求點P的坐標,使得PA+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角板的直角頂點C疊放在一起.
(1)若∠DCB=35°,求∠ACB的度數(shù);
(2)若∠ACB=140°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中AD∥BC,對角線AC、BD相交于點O,若AO:CO=2:3,AD=4,則BC等于( )
A.12
B.8
C.7
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定,在平面直角坐標系中,將一個圖形先關(guān)于y軸對稱,再向下平移2個單位記為1次“R變換”.
(1)畫出△ABC經(jīng)過1次“R變換”后的圖形△A1B1C1;
(2)若△ABC經(jīng)過3次“R變換”后的圖形為△A3B3C3,則頂點A3坐標為 ;
(3)記點P(a,b)經(jīng)過n次“R變換”后的點為Pn,直接寫出Pn的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com