【題目】為了豐富同學(xué)們的知識(shí),拓展閱讀視野,學(xué)習(xí)圖書館購買了一些科技、文學(xué)、歷史等書籍,進(jìn)行組合搭配成、三種套型書籍,發(fā)放給各班級(jí)的圖書角供同學(xué)們閱讀,已知各套型的規(guī)格與價(jià)格如下表:

套型

套型

套型

規(guī)格(本/套)

12

9

7

價(jià)格(元/套)

200

150

120

1)已知搭配兩種套型書籍共15套,需購買書籍的花費(fèi)是2120元,問兩種套型各多少套?

2)若圖書館用來搭配的書籍共有2100本,現(xiàn)將其搭配成、兩種套型書籍,這兩種套型的總價(jià)為30750元,求搭配后剩余多少本書?

3)若圖書館用來搭配的書籍共有122本,現(xiàn)將其搭配成、三種套型書籍共13套,且沒有剩余,請(qǐng)求出所有搭配的方案.

【答案】14套,11套;(2)剩下的書籍為255本;(3

【解析】

1)設(shè)A種套型有套,C種套型有套,根據(jù)兩種書籍共15套及購買書籍的花費(fèi)是2120元列方程組求解可得;

2)設(shè)A中書籍m套、B種書籍n套,由兩種套型的總價(jià)為30750元,得出,

根據(jù)搭配AB兩種套型書籍需要書籍求解可得;

3)設(shè)A種書籍套,B種書籍套,C種書籍 套,根據(jù)用來搭配的書籍共有122本得,又,消去,依據(jù)均為非負(fù)整數(shù)求解可得.

1)設(shè)兩種套型各為,

則有,解得,即4套,11

2)設(shè)、兩種套型各為、套,則有,,所以可得搭配書的總量,所以剩下的書籍為255

3)設(shè)、三種套型各為、套,

則有,消去,即

均為非負(fù)整數(shù),則可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把對(duì)角線互相垂直的四邊形叫做垂直四邊形.

1)如圖1,在四邊形ABCD中,ABAD,CBCD,問四邊形ABCD是垂直四邊形嗎?請(qǐng)說明理由;

2)如圖2,四邊形ABCD是垂直四邊形,求證:AD2+BC2AB2+CD2

3)如圖3,RtABC中,∠ACB90°,分別以AC、AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC4,BC3,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y2x+b的圖象與x軸的交點(diǎn)為A2,0),與y軸的交點(diǎn)為B,直線AB與反比例函數(shù)y的圖象交于點(diǎn)C(﹣1,m).

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)直接寫出關(guān)于x的不等式2x+b的解集;

3)點(diǎn)P是這個(gè)反比例函數(shù)圖象上的點(diǎn),過點(diǎn)PPMx軸,垂足為點(diǎn)M,連接OP,BM,當(dāng)SABM2SOMP時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線,經(jīng)過點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限上的動(dòng)點(diǎn),過C作CAx軸,過D作DBy軸,垂足分別為A,B,連接AB,BC.

(1)求k的值;

(2)若BCD的面積為12,求直線CD的解析式;

(3)判斷AB與CD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB為銳角,在射線OA上依次截取A1A2A2A3A3A4=…=AnAn+1,在射線OB上依次截取B1B2B2B3B3B4=…=BnBn+1,記Sn為△AnBnBn+1的面積(n為正整數(shù)),若S37S410,則S2019=( 。

A.4039B.4041C.6055D.6058

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,點(diǎn)邊上一點(diǎn),,點(diǎn)的中點(diǎn),過點(diǎn)作直線分別與,相交于點(diǎn),.,則長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸,y軸分別交于A,B,與反比例函數(shù)k0)在第一象限的圖象交于點(diǎn)E,F,過點(diǎn)EEMy軸于M,過點(diǎn)FFNx軸于N,直線EMFN交于點(diǎn)C,若,則△OEF與△CEF的面積之比是( 。

A.21B.31C.23D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑作⊙OBC于點(diǎn)D,過點(diǎn)D作⊙O的切線DEAC于點(diǎn)E,交AB延長線于點(diǎn)F

1)求證:DEAC

2)若AB10,BF,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時(shí),裁掉的正方形邊長多大?

(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案