【題目】如圖,A′B′C′ABC 經(jīng)過平移得到的,ABC 中任意一點(diǎn) Px1,y1)平移后的對應(yīng)點(diǎn)為 P′x1+6y15).

1)請寫出三角形 ABC 平移的過程;

2)分別寫出點(diǎn) A′B′,C′的坐標(biāo);

3)畫出平移后的圖形.

【答案】1)△ABC向右平移6個(gè)單位,向下平移5個(gè)單位得到△ABC′;(2A′(2,﹣1),B′(1,﹣4),C′(5,﹣2);(3)如圖見解析.

【解析】

1)根據(jù)點(diǎn)的坐標(biāo)的變化方式可得ABC的平移方式;

2)首先確定A、BC三點(diǎn)坐標(biāo),然后每個(gè)點(diǎn)的坐標(biāo)橫坐標(biāo)加6,縱坐標(biāo)減5即可;

3)根據(jù)(2)中A′,B′,C′的坐標(biāo)畫出圖形即可.

解:(1)∵△ABC中任意一點(diǎn)Px1,y1)平移后的對應(yīng)點(diǎn)為P′x1+6,y15).

∴△ABC向右平移6個(gè)單位,向下平移5個(gè)單位得到A′B′C′

2)由圖可知A(-4,4)B(-5,1)、C(-1,3),

所以A′2,﹣1),B′1,﹣4),C′5,﹣2);

3)如圖:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點(diǎn)A落在點(diǎn)A′處,若A′為CE的中點(diǎn),則折痕DE的長為(
A.
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD中,已知AD=8,AB=6E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2 , 后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
(3)求彈珠離開軌道時(shí)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC,∠A=90°,點(diǎn)DBC的中點(diǎn),點(diǎn)E,F分別在AB,AC,EDF=90°,連接EF,求證:BE2+CF2=EF2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例的圖象相交于A、B兩點(diǎn),則圖中使反比例函數(shù)的值小于一次函數(shù)的值的x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x,y的二元一次方程組的解是一個(gè)等腰三角形的一條腰和一條底邊的長,且這個(gè)等腰三角形的周長為9,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,小明隨父母到某旅游勝地參觀游覽,他在游客中心O處測得景點(diǎn)A在其北偏東72°方向,測得景點(diǎn)B在其南偏東40°方向.小明從游客中心走了2千米到達(dá)景點(diǎn)A,已知景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與B之間的距離.(結(jié)果精確到0.1千米)
(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,sin40°≈0.64,tan40°≈0.84)

查看答案和解析>>

同步練習(xí)冊答案