【題目】某數(shù)碼產(chǎn)品專賣店的一塊攝像機支架如圖所示,將該支架打開立于地面MN上,主桿AC與地面垂直,調(diào)節(jié)支架使得腳架BE與主桿AC的夾角∠CBE=45°,這時支架CD與主桿AC的夾角∠BCD恰好等于60°,若主桿最高點A到調(diào)節(jié)旋鈕B的距離為40cm.支架CD的長度為30cm,旋轉(zhuǎn)鈕D是腳架BE的中點,求腳架BE的長度和支架最高點A到地面的距離.(結(jié)果保留根號)
【答案】(40+30)cm
【解析】分析:過點D作DG⊥BC于點G,延長AC交MN于點H,則AH⊥MN,在Rt△DCG中,求出DG的值,在Rt△BDG中,求出BD的值,在Rt△BHE中,求出BH的值,從而結(jié)論可求.
詳解:過點D作DG⊥BC于點G,延長AC交MN于點H,則AH⊥MN,
在Rt△DCG中,根據(jù)sin∠GCD=,得DG=CDsin∠GCD=,
在Rt△BDG中,根據(jù)sin∠GBD=,得,
∵D為BE的中點,
∴BE=2BD=30,
在Rt△BHE中,根據(jù)cos∠HBE=,
得BH=BE,
∴AH=AB+BH=40+30,
∴腳架BE的長度為30cm,支架最高點A到地面
的距離為()cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG中,點D在CG上,已知:BC=1,CE=7,H是AF的中點,則AF=_____,CH=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線的解析式為,且與軸交于點D,直線經(jīng)過點、,直線、交于點C.
(1)求直線的解析表達式;
(2)求的面積;
(3)在直線上存在異于點C的另一點P,使得與的面積相等,請求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了預防流行性感冒,對教室采用藥熏消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量與時間成正比例.藥物燃燒后,y與x成反比例(如圖所示),現(xiàn)測得藥物6min燃畢,此時室內(nèi)空氣中每立方米的含藥量為4mg,
(1)寫出藥物燃燒前后,y與x之間的函數(shù)表達式;
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時學生方可進教室,那么從消毒開始,至少需要經(jīng)過多少分鐘,學生方能回到教室?
(3)研究表明,當空氣中每立方米的含藥量不低于2mg且持續(xù)時間不低于9min時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關系,并說明理由;
(3)在上述直角三角板從圖1逆時針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點O按15°每秒的速度旋轉(zhuǎn),當直角三角板的直角邊ON所在直線恰好平分∠AOC時,求此時三角板繞點O的運動時間t的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一次函數(shù)y=2x﹣b(b為常數(shù))的圖象位于x軸上方的部分沿x軸翻折后,得到的折線是函數(shù)y=﹣|2x﹣b|(b為常數(shù))的圖象.若該圖象在直線y=﹣4上方的點的橫坐標x都滿足0<x<5.則b的取值范圍是( 。
A. b≥﹣6 B. b≤4 C. ﹣6≤b≤﹣4 D. 4≤b≤6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在第一象限,△ABP是邊長為2的等邊三角形,當點A在x軸的正半軸上運動時,點B隨之在y軸的正半軸上運動,運動過程中,點P到原點的最大距離是______;若將△ABP的PA邊長改為,另兩邊長度不變,則點P到原點的最大距離變?yōu)?/span>______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可疑船只,測得A、B兩處距離為99海里,可疑船只正沿南偏東53°方向航行.我漁政船迅速沿北偏東27°方向前去攔截,2小時后剛好在C處將可疑船只攔截.求該可疑船只航行的速度.
(參考數(shù)據(jù):sin27°≈, cos27°≈, tan27°≈, sin53°≈, cos53°≈, tan53°≈)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com