【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點DE,過點D作⊙O的切線DF,交AC于點F

(1)求證:DFAC;

(2)若⊙O的半徑為4,∠CDF=22.5°,請直接寫出弧AE的長.

【答案】(1)證明見解析;(2)

【解析】

(1)連接OD,易得∠ABC=ODB,由AB=AC,易得∠ABC=ACB,等量代換得∠ODB=ACB,利用平行線的判定得ODAC,由切線的性質得DFOD,得出結論;

(2)連接OE,利用(1)的結論得∠ABC=ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用弧長公式即可得出結論.

(1)證明:如圖,連接OD

OB=OD,

∴∠ABC=ODB,

AB=AC,

∴∠ABC=ACB,

∴∠ODB=ACB

ODAC,

∵過點D作⊙O的切線DF,交AC于點F,

DFOD,

DFAC

(2)解:如圖,連接OE,

DFAC,∠CDF=22.5°

∴∠ABC=ACB=67.5°,

∴∠BAC=45°,

OA=OE,

∴∠AOE=90°

∵⊙O的半徑為4,

∴弧AE的長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】10分)感知如圖,在四邊形ABCDABCD,B=90°,PBC邊上,APD=90°易證ABP∽△PCD,從而得到BPPC=ABCD(不需證明)

探究如圖,在四邊形ABCD,PBC邊上B=∠C=∠APD,結論BPPC=ABCD仍成立嗎?請說明理由?

拓展如圖,ABC,PBC的中點,DE分別在邊AB、AC上.若B=∠C=∠DPE=45°,BC=4 ,CE=3DE的長為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙OAB=AC,延長BC至點D,使CD=CA,連接AD⊙O于點E,連接BE、CE.

(1)求證:△ABE≌△CDE;

(2)填空:

∠ABC的度數(shù)為   時,四邊形AOCE是菱形;

AE=6,EF=4,DE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=-(x+4)(x-4)x軸交于AB兩點,與y軸交于C點,⊙C的半徑為2G為⊙C上一動點,PAG的中點,則OP的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點A(-10)、B(30)、C(03)三點.

(1)求拋物線相應的函數(shù)表達式;

(2)M是線段BC上的點(不與BC重合),過MMNy軸交拋物線于N,連接NB.若點M的橫坐標為t,是否存在t,使MN的長最大?若存在,求出sinMBN的值;若不存在,請說明理由;

(3)若對一切x≥0均有ax2+bx+c≤mx-m+13成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,將點P繞點T(t,0)(10)旋轉180°得到點Q,則稱點Q為點P發(fā)展點

(1)t=2時,點(0,0)發(fā)展點坐標為______,點(-1-1)發(fā)展點坐標為______

(2)t3,則點(34)發(fā)展點的橫坐標為______(用含t的代數(shù)式表示)

(3)若點P在直線y=2x+6上,其發(fā)展點”Q在直線y=2x-8上,求點T的坐標.

(4)P(3,3)在拋物線y=-x2+k上,點M在這條拋物線上,點Q為點P發(fā)展點.若△PMQ是以點M為直角頂點的等腰直角三角形,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(x-2)(x-3)=m有實數(shù)根x1,x2,且x1x2.

(1)求m的取值范圍;

(2)如果這個方程的兩個實根分別為x1=α,x2,且αβ,當m>0時,試比較α,β,2,3的大小,并用“<”連接;

(3)求二次函數(shù)y=(xx1)(xx2)+m的圖像與x軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,交BA的延長線于點F,若弧EF的長為π,則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數(shù),參考數(shù)據(jù)≈1.732)

查看答案和解析>>

同步練習冊答案