【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為D,直線(xiàn)DC與AB的延長(zhǎng)線(xiàn)相交于點(diǎn)P.

(1)求證:AC2=ADAB.

(2)點(diǎn)E是∠ACB所對(duì)的弧上的一個(gè)動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),連接EC交直徑AB于點(diǎn)F,∠DAP=64°.

①當(dāng)∠ECB=   °時(shí),△PCF為等腰三角形;

②當(dāng)∠ECB=   °時(shí),四邊形ACBE為矩形.

【答案】(1)見(jiàn)解析;(2)①45;②58.

【解析】

1)先判斷出∠ACD=∠ABC,再利用直徑所對(duì)的圓周角等于90度和垂直的定義判斷出∠ADC=∠ACB,進(jìn)而判斷出△ADC∽△ACB,即可得出結(jié)論;

2先求出∠CAD32°,判斷出∠CAP>∠P,進(jìn)而判斷出CFCP,再求出∠BCP32°>∠P,得出BPBC,進(jìn)而判斷出CFPF,最后用等腰三角形的性質(zhì)即可得出結(jié)論;

先判斷出CE過(guò)點(diǎn)O,進(jìn)而求出∠ACE,即可得出結(jié)論.

解:(1∵CD⊙O的切線(xiàn),

∴∠ACD∠ABC,

∵AB⊙O的直徑,

∴∠ACB90°,

∵AD⊥CD

∴∠ADC90°∠ACB,

∴△ADC∽△ACB

,

∴AC2ABAD

2由(1)知,∠ACD∠ABC,

∵∠ACD+∠CAD90°,∠ABC+∠BAC90°,

∴∠CAD∠BAC∠DAP32°

∵∠P90°∠DAP26°

∴∠CAP∠P,

∴CPAC,

點(diǎn)F在直徑AB上(且不和點(diǎn)A,B重合),

∴CF≠CP

∵∠CAD32°,

∴∠ACD90°∠CAD58°,

∵∠ACB90°,

∴∠BCP180°∠ACD∠ACB32°∠P

∴BPBC,

點(diǎn)F在直徑AB上(且不和點(diǎn)A,B重合),

∴CF≠PF,

∵△PCF是等腰三角形,

∴PCPF

∴∠PCF180°∠P)=77°,

∴∠BCE∠PCF∠BCP45°,

故答案為:45;

如圖,

四邊形ACBE是矩形,

∴ABCE互相平分,

點(diǎn)OAB的中點(diǎn),

點(diǎn)F和點(diǎn)O重合,

∴∠ACE∠CAB32°

∴∠BCE90°∠ACE58°,

故答案為:58

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△AOB的三個(gè)頂點(diǎn)A、O、B分別落在拋物線(xiàn)F1的圖象上,點(diǎn)A的橫坐標(biāo)為﹣4,點(diǎn)B的縱坐標(biāo)為﹣2.(點(diǎn)A在點(diǎn)B的左側(cè))

(1)求點(diǎn)AB的坐標(biāo);

(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A'OB',拋物線(xiàn)F2經(jīng)過(guò)A'B'兩點(diǎn),已知點(diǎn)M為拋物線(xiàn)F2的對(duì)稱(chēng)軸上一定點(diǎn),且點(diǎn)A'恰好在以OM為直徑的圓上,連接OMA'M,求△OA'M的面積;

(3)如圖2,延長(zhǎng)OB'交拋物線(xiàn)F2于點(diǎn)C,連接A'C,在坐標(biāo)軸上是否存在點(diǎn)D,使得以AO、D為頂點(diǎn)的三角形與△OA'C相似.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對(duì)現(xiàn)有多媒體設(shè)備進(jìn)行升級(jí)改造,已知購(gòu)買(mǎi)3個(gè)鍵盤(pán)和1個(gè)鼠標(biāo)需要190元;購(gòu)買(mǎi)2個(gè)鍵盤(pán)和3個(gè)鼠標(biāo)需要220元;

1)求鍵盤(pán)和鼠標(biāo)的單價(jià)各是多少元?

2)經(jīng)過(guò)與經(jīng)銷(xiāo)商洽談,鍵盤(pán)打八折,鼠標(biāo)打八五折.若學(xué)校計(jì)劃購(gòu)買(mǎi)鍵盤(pán)和鼠標(biāo)共50件,且總費(fèi)用不超過(guò)1820元,則最多可購(gòu)買(mǎi)鍵盤(pán)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)圖象與x軸交于A(yíng)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(不包括這兩個(gè)點(diǎn)),下列結(jié)論:

①當(dāng)﹣1<x<3時(shí),y>0;②﹣1<a<﹣;③當(dāng)m≠1時(shí),a+b>m(am+b);④4ac﹣b2>8a其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)A(-3,4)B(-3,0)、C(-1,0) .以D為頂點(diǎn)的拋物線(xiàn)y = ax2+bx+c過(guò)點(diǎn)B. 動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動(dòng),點(diǎn)P、Q運(yùn)動(dòng)的速度均為每秒1個(gè)單位,運(yùn)動(dòng)的時(shí)間為t秒. 過(guò)點(diǎn)PPECDBD于點(diǎn)E,過(guò)點(diǎn)EEFAD于點(diǎn)F,交拋物線(xiàn)于點(diǎn)G.

(1)求拋物線(xiàn)的解析式;

(2)當(dāng)t為何值時(shí),四邊形BDGQ的面積最大?最大值為多少?

(3)動(dòng)點(diǎn)PQ運(yùn)動(dòng)過(guò)程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,EH為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫(xiě)出此時(shí)菱形的周長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)y=x﹣2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A.

(1)求二次函數(shù)的解析式;

(2)如圖1,點(diǎn)M是線(xiàn)段BC上的一動(dòng)點(diǎn),動(dòng)點(diǎn)D在直線(xiàn)BC下方的二次函數(shù)圖象上.設(shè)點(diǎn)D的橫坐標(biāo)為m.

①過(guò)點(diǎn)D作DM⊥BC于點(diǎn)M,求線(xiàn)段DM關(guān)于m的函數(shù)關(guān)系式,并求線(xiàn)段DM的最大值;

②若△CDM為等腰直角三角形,直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某山區(qū)不僅有美麗風(fēng)光,也有許多令人喜愛(ài)的土特產(chǎn),為實(shí)現(xiàn)脫貧奔小康,某村組織村民加工包裝土特產(chǎn)銷(xiāo)售給游客,以增加村民收入.已知某種士特產(chǎn)每袋成本10.試銷(xiāo)階段每袋的銷(xiāo)售價(jià)x(元)與該士特產(chǎn)的日銷(xiāo)售量y(袋)之間的關(guān)系如表:

x(元)

15

20

30

y(袋)

25

20

10

若日銷(xiāo)售量y是銷(xiāo)售價(jià)x的一次函數(shù),試求:

1)日銷(xiāo)售量y(袋)與銷(xiāo)售價(jià)x(元)的函數(shù)關(guān)系式;

2)假設(shè)后續(xù)銷(xiāo)售情況與試銷(xiāo)階段效果相同,要使這種土特產(chǎn)每日銷(xiāo)售的利潤(rùn)最大,每袋的銷(xiāo)售價(jià)應(yīng)定為多少元?每日銷(xiāo)售的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過(guò)點(diǎn)AABx軸,垂足為點(diǎn)A,過(guò)點(diǎn)CCBy軸,垂足為點(diǎn)C,兩條垂線(xiàn)相交于點(diǎn)B.

(1)線(xiàn)段AB,BC,AC的長(zhǎng)分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開(kāi),折痕DEAB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.

請(qǐng)從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線(xiàn)段AD的長(zhǎng);

②在y軸上,是否存在點(diǎn)P,使得APD為等腰三角形?若存在,請(qǐng)直接寫(xiě)出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

B:①求線(xiàn)段DE的長(zhǎng);

②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與ABC全等?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)模擬測(cè)試中,六名學(xué)生的數(shù)學(xué)成績(jī)?nèi)缦卤硭,下列關(guān)于這組數(shù)據(jù)描述正確的是( 。

姓名

小紅

小明

小東

小亮

小麗

小華

成績(jī)(分)

110

106

109

111

108

110

A.眾數(shù)是110B.方差是16

C.平均數(shù)是109.5D.中位數(shù)是109

查看答案和解析>>

同步練習(xí)冊(cè)答案