【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作BOC,使BOCABO全等,則點(diǎn)C坐標(biāo)為________________________________

【答案】(-2,0)(24)(-2,4)

【解析】如圖,點(diǎn)Cx軸負(fù)半軸上時(shí),

∵△BOCABO全等,
OC=OA=2,
∴點(diǎn)C(-2,0),
點(diǎn)C在第一象限時(shí),∵△BOCABO全等,
BC=OA=2,OB=BO=4,
∴點(diǎn)C(2,4),
點(diǎn)C在第二象限時(shí),∵△BOCABO全等,
BC=OA=2,OB=BO=4,
∴點(diǎn)C(-2,4);
綜上所述,點(diǎn)C的坐標(biāo)為(-2,0)或(2,4)或(-2,4).


故答案是:(-2,0)或(2,4)或(-2,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長度為1個(gè)單位長度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.

1)在圖中畫出與關(guān)于直線成軸對(duì)稱的△A′B′C′;

2)線段CC′被直線      ;

3△ABC的面積為      ;

4)在直線上找一點(diǎn)P,使PB+PC的長最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC=90°,AB=BC=,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到ADE,連接BE,則BE的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC邊上的高,BE平分∠△ABC交AD于點(diǎn)E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單項(xiàng)式﹣3πxyz2的系數(shù)是 , 次數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=  度;

(2)設(shè)∠BAC=α,BCE=β.

①如圖2,當(dāng)點(diǎn)D在線段BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;

②當(dāng)點(diǎn)D在直線BC上移動(dòng),則α,β之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一道題目是一個(gè)多項(xiàng)式加上多項(xiàng)式xy﹣3yz﹣2xz,某同學(xué)以為是減去這個(gè)多項(xiàng)式,因此計(jì)算得到的結(jié)果為2xy﹣3yz+4xz.請(qǐng)你改正他的錯(cuò)誤,求出正確的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=13厘米,BC=10厘米,ADBC于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1厘米的速度在線段AD上向終點(diǎn)D運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.

(1)求AD的長;

(2)當(dāng)PDC的面積為15平方厘米時(shí),求t的值;

(3)動(dòng)點(diǎn)M從點(diǎn)C出發(fā)以每秒2厘米的速度在射線CB上運(yùn)動(dòng).點(diǎn)M與點(diǎn)P同時(shí)出發(fā),且當(dāng)點(diǎn)P運(yùn)動(dòng)到終點(diǎn)D時(shí),點(diǎn)M也停止運(yùn)動(dòng).是否存在t,使得?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程2+▲=3x,▲處被墨水蓋住了,已知方程的解是x2,那么▲處的數(shù)字是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案