【題目】如圖,直線l1∥l2,⊙Ol1l2分別相切于點A和點B,點M和點N分別是l1l2上的動點,MN沿l1l2平移,若⊙O的半徑為1,∠1=60°,下列結論錯誤的是( 。

A. MN= B. MNO相切,則AM=

C. l1l2的距離為2 D. ∠MON=90°,則MN⊙O相切

【答案】B

【解析】連結OA、OB,如圖1,

∵⊙O與l1和l2分別相切于點A和點B,

∴OA⊥l1,OB⊥l2,

∵l1∥l2

點A、O、B共線,

AB為O的直徑,

∴l(xiāng)1和l2的距離為2;故C正確,

作NHAM于H,如圖1,

則MH=AB=2,

∵∠AMN=60°,

sin60°=,

MN==;故A正確,

當MN與O相切,如圖2,連結OM,ON,

當MN在AB左側時,AMO=AMN=×60°=30°,

RtAMO中,tanAMO=,即AM==,

RtOBN中,ONB=BNM=60°,tanONB=,即BN==,

當MN在AB右側時,AM=,

AM的長為;故B錯誤,

MON=90°時,作OEMN于E,延長NO交l1于F,如圖2,

∵OA=OB,

∴Rt△OAF≌Rt△OBN,

∴OF=ON,

MO垂直平分NF,

OM平分∠NMF,

∴OE=OA,

MN為O的切線.故D正確.

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

1)若此方程的一個根為1,求的值;

2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點都在軸上,點都在直線上,,且,分別是以為直角頂點的等腰直角三角形,則的面積是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,左右兩幅圖案關于y軸對稱,右圖案中的左右眼睛的坐標分別是(2,3),(4,3),嘴角左右端點的坐標分別是(2,1),(4,1)

(1)試確定左圖案中的左右眼睛和嘴角左右端點的坐標;

(2)從對稱的角度來考慮,說一說你是怎樣得到的;

(3)直接寫出右圖案中的嘴角左右端點關于原點的對稱點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若某校對各個班級的教室衛(wèi)生檢查成績如下表所示:

地面

門窗

桌椅

黑板

一班

二班

三班

(1)若按平均成績計算,哪班衛(wèi)生成績最好?

(2)若將地面、門窗、桌椅、黑板按,,的比例計算各班衛(wèi)生成績,那么哪個班的成績最高?

(3)試統(tǒng)計你校八年級各個班地面、門窗、桌椅、黑板的衛(wèi)生成績,并分別按(1)、(2)的評分標準計算成績,看看你所在班級的衛(wèi)生情況,你將怎樣繼續(xù)改進?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(﹣2,3),B(﹣3,1),C(﹣1,2).

(1)將△ABC向右平移4個單位,畫出平移后的△A1B1C1;

(2)畫出△ABC關于x軸對稱的△A2B2C2

(3)將△ABC繞原點O旋轉180°,畫出旋轉后的△A3B3C3;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線為拋物線、b、c為常數(shù),夢想直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點A在點B的左側,與x軸負半軸交于點C

填空:該拋物線的夢想直線的解析式為______,點A的坐標為______,點B的坐標為______;

如圖,點M為線段CB上一動點,將AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的夢想三角形,求點N的坐標;

當點E在拋物線的對稱軸上運動時,在該拋物線的夢想直線上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩車從A地駛向B地,甲車比乙車早出發(fā)2h,并且甲車在途中休息了0.5h,甲、乙兩車離A地的距離y(km)與甲車行駛時間x(h)之間的函數(shù)圖象如圖所示.根據(jù)圖象提供的信息,下列說法:

①乙車速度比甲車慢;②a=40;③乙車比甲車早1.75小時到達B地.

其中正確的有(  )

A.0B.2C.1D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一塊長方形鏡面玻璃的四周鑲上與它的周長相等的邊框,制成一面鏡子,鏡子的長與寬的比是21設制作這面鏡子的寬度是x米,總費用是y元,則y=240x2+180x+60.(注:總費用=鏡面玻璃的費用+邊框的費用+加工費).

1)這塊鏡面玻璃的價格是每平方米   元,加工費   元;

2)如果制作這面鏡子共花了210元,求這面鏡子的長和寬.

查看答案和解析>>

同步練習冊答案