【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對折成∠COB(OA與OB重合),從O點(diǎn)引一條射線OE,使∠BOE=∠EOC,再沿OE把角剪開,若剪開后得到的3個角中最大的一個角為76°,則∠AOB=_____________°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(﹣4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個單位長度的速度沿x軸向點(diǎn)O運(yùn)動;點(diǎn)Q從點(diǎn)O同時出發(fā),以相同的速度沿x軸的正方向運(yùn)動,規(guī)定點(diǎn)P到達(dá)點(diǎn)O時,點(diǎn)Q也停止運(yùn)動.連接BP,過P點(diǎn)作BP的垂線,與過點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動的時間為t(s).
(1)∠PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (用t表示);
(2)當(dāng)t為何值時,△PBE為等腰三角形?
(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次函數(shù)y=kx-6中,已知y隨x的增大而減。铝嘘P(guān)于反比例函數(shù)y=
的描述,其中正確的是( )
A. 當(dāng)x>0時,y>0 B. y隨x的增大而增大
C. y隨x的增大而減小 D. 圖像在第二、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別.
(1)隨機(jī)地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
(3)如果不公平請你修改游戲規(guī)則使游戲規(guī)則對甲乙雙方公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸、y軸分別相交于點(diǎn)A(﹣1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點(diǎn)為E. 求△ODE的面積;拋物線的對稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請求出P點(diǎn)的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知關(guān)于x的方程kx=11﹣2x有整數(shù)解,則負(fù)整數(shù)k的值為 .
(2)若a+b+c=0,且a>b>c,以下結(jié)論:
①a>0,c>0;
②關(guān)于x的方程ax+b+c=0的解為x=1;
③a2=(b+c)2;
④的值為0或2;
⑤在數(shù)軸上點(diǎn)A、B、C表示數(shù)a、b、c,若b<0,則線段AB與線段BC的大小關(guān)系是AB>BC.
其中正確的結(jié)論是 (填寫正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:問題:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC,探究PG與PC的位置關(guān)系。
(1)請你寫出上面問題中線段PG與PC的位置關(guān)系,并說明理由;
(2)將圖1中的菱形BEFG繞點(diǎn)B順時針旋轉(zhuǎn),使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,
(3)將菱形ABCD和菱形BEFG均改成正方形,如圖3,P為DF的中點(diǎn),此時PG與PC的位置關(guān)系和數(shù)量關(guān)系分別是什么?直接寫出答案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某長方形廣場的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長方形的長為a米,寬為b米.
(1)請列式表示廣場空地的面積;
(2)若長方形的長為300米,寬為200米,圓形的半徑為10米,計算廣場空地的面積(計算結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com